WS 00/01

Technische Hochschule Aachen Prof. Dr. E. Grädel

1. Übung Mathematische Logik

Abgabe: Dienstag, den 24.10.2000 zu Beginn der Vorlesung am AH V oder bis 14 Uhr am Lehrstuhl Übungstermin: Freitag, den 27.10.2000 in den Übungsgruppen

Aufgabe 1: 7 Punkte

- (a) Gegeben sei eine Interpretation \Im , so dass $\Im(X_1)=1, \Im(X_2)=1, \Im(X_3)=1$ und $\Im(X_4)=0$. Geben Sie für jede der folgenden Formeln ihren Wahrheitswert unter der Interpretation \Im an. Begründen Sie Ihre Antwort.
 - $(i) \ \varphi_1 := \neg((\neg(X_4 \to (X_1 \land \neg X_3))) \leftrightarrow (\neg X_2 \to (X_3 \land \neg(X_4 \lor X_1))))$
 - $(ii) \ \varphi_2 := \neg (\neg ((X_2 \land (X_3 \lor X_4)) \leftrightarrow (X_1 \rightarrow (X_3 \leftrightarrow X_4))) \rightarrow (X_3 \land (X_4 \rightarrow (X_2 \land \neg X_2))))$
 - $(iii) \ \varphi_3 := \neg(X_2 \land (\neg X_3 \lor (X_1 \land X_3 \to X_4))) \to (X_4 \lor (\neg X_4 \to ((X_1 \land \neg X_4) \leftrightarrow (X_2 \land X_3))))$
- (b) Zeigen Sie:
 - $(i) \quad \llbracket \psi \wedge \varphi \rrbracket^{\Im} = \llbracket \psi \rrbracket^{\Im} \cdot \llbracket \varphi \rrbracket^{\Im}$
 - (ii) $\llbracket \psi \lor \varphi \rrbracket^{\Im} = \llbracket \psi \rrbracket^{\Im} + \llbracket \varphi \rrbracket^{\Im} \llbracket \psi \rrbracket^{\Im} \cdot \llbracket \varphi \rrbracket^{\Im}$
 - (iii) $\llbracket \psi \to \varphi \rrbracket^{\Im} = 1 \llbracket \psi \rrbracket^{\Im} + \llbracket \psi \rrbracket^{\Im} \cdot \llbracket \varphi \rrbracket^{\Im}$
 - (iv) $\llbracket \psi \to \varphi \rrbracket^{\Im} = 1 \iff \llbracket \psi \rrbracket^{\Im} \le \llbracket \varphi \rrbracket^{\Im}$

Aufgabe 2:

Aussagenlogische Formeln in Negations-Normalform (NNF) sind induktiv wie folgt definiert:

- Aussagenvariabeln und negierte Aussagenvariabeln sind NNF-Formeln.
 - Mit ψ und φ sind auch $(\psi \land \varphi)$ und $(\psi \lor \varphi)$ NNF-Formeln.

Geben Sie einen Algorithmus an, der jede aussagenlogische Formel in eine äquivalente NNF-Formel transformiert. Schätzen Sie die Laufzeit des Algorithmus sowie die Länge der resultierenden Formel ab.

Aufgabe 3:

Sei F(n) die Anzahl nicht-äquivalenter aussagenlogischer Formeln ψ mit $\tau(\psi) \subseteq \{X_1, \ldots, X_n\}$.

- (a) Berechnen Sie F(0), F(1), F(2).
- (b) Berechnen Sie F(n) für beliebige n. Hinweis: Betrachten Sie Formeln der Form $(X_{n+1} \wedge \varphi_1(X_1, \dots, X_n)) \vee (\neg X_{n+1} \wedge \varphi_2(X_1, \dots, X_n))$.

Aufgabe 4: 7 Punkte

- (a) Welche der folgenden Formeln sind Tautologien:
 - (i) $(\psi \to \varphi) \to (\neg \varphi \to \neg \psi)$

- (ii) $0 \rightarrow \psi$
- (iii) $(\psi \to \varphi) \to (\varphi \to \psi)$
- (iv) $(\psi \land \neg \psi) \to 1$
- $(v) \ (\psi \to \neg \psi) \to \neg \psi$
- (b) Für Formeln $\psi(X)$ und φ sei $\psi(\varphi)$ die Formel, welche man erhält, wenn man in ψ alle Vorkommen von X durch φ ersetzt. Zeigen Sie, dass die Formeln $\psi(1) \to \psi(\psi(1))$ und $\psi(X) \to \psi(\psi(1))$ Tautologien sind.
- (c) Zeigen Sie: Ist $\psi(X) \to \varphi$ eine Tautologie und $X \notin \tau(\varphi)$, so ist für beliebige ϑ die Formel $\psi(\vartheta) \to \varphi$ ebenfalls eine Tautologie.

Aufgabe 5:

Sei $\psi \to \varphi$ eine aussagenlogische Tautologie. Wir nennen ϑ einen Interpolanten für $\psi \to \varphi$, wenn $\psi \to \vartheta$ und $\vartheta \to \varphi$ Tautologien sind und $\tau(\vartheta) \subseteq \tau(\psi) \cap \tau(\varphi)$.

- (a) Zeigen Sie, dass $\psi(\psi(1,Y),Y)$ ein Interpolant für $\psi(X,Y) \to \varphi(Y,Z)$ ist.
- (b) Zeigen Sie per Induktion über die Anzahl der Aussagenvariablen, die in ψ aber nicht in φ vorkommen, dass zu jeder Tautologie $\psi \to \varphi$ ein Interpolant existiert (aussagenlogisches Interpolationstheorem).

Technische Hochschule Aachen Prof. Dr. E. Grädel WS 00/01

2. Übung Mathematische Logik

Abgabe: Dienstag, den 7.11.2000 zu Beginn der Vorlesung am AH V oder bis 14 Uhr am Lehrstuhl Übungstermin: Freitag, den 10.11.2000 in den Übungsgruppen

Aufgabe 1: 8 Punkte

Eine besonders für algorithmische Fragen sehr geeignete Präsentation aussagenlogischer Formeln ist die Darstellung als Syntaxbäume. Der Syntaxbaum T_{φ} einer aussagenlogischen Formel φ ist induktiv definiert wie folgt:

- Ist φ eine atomare Formel, so besteht T_{φ} aus einem mit φ beschrifteten Blatt.
- Ist $\varphi := \neg \psi$, so besteht T_{φ} aus einer mit \neg beschrifteten Wurzel, mit T_{ψ} als Unterbaum.
- Ist $\varphi := \varphi_1 \theta \varphi_2$, mit $\theta \in \{ \land, \lor, \rightarrow \}$ und φ_1, φ_2 Formeln, so ist T_{φ} definiert als Baum mit einer mit θ beschrifteten Wurzel mit T_{φ_1} als linkem und T_{φ_2} als rechten Unterbaum.
- (a) Konstruieren Sie die Syntaxbäume folgender Formeln:
 - (i) $\varphi_1 := \neg(((X_1 \land X_2) \lor \neg X_3) \land ((\neg(X_1 \lor X_3)) \land \neg X_1 \lor X_2))$
 - (ii) $\varphi_2 := ((X_1 \vee X_2) \wedge (\neg X_1 \wedge X_2)) \wedge ((X_1 \wedge \neg X_2) \vee (X_1 \wedge \neg X_3))$
- (b) Geben Sie einen Algorithmus zur Auswertung aussagenlogischer Formeln an. Der Algorithmus soll als Eingabe den Syntaxbaum einer Formel sowie eine Interpretation der Variablen erhalten. Die Interpretation \Im ist als Liste von Paaren $(X, \Im(X))$ gegeben, wobei X eine Variable und $\Im(X)$ die Interpretation der Variablen in \Im sein soll. Der Algorithmus soll so implementiert werden, daß er mit einem Zeiger in den Baum, einem Zeiger in die Liste sowie einer Bit-Variablen auskommt. (Komplexitätstheoretisch bedeutet dies, daß er Algorithmus mit logarithmisch beschränktem Platz auskommen muß.)
- (c) Demonstrieren Sie die Arbeitsweise Ihres Algorithmus an den Formeln aus Teil a) unter der Interpretation \mathfrak{I} mit $\mathfrak{I}(X_1)=1, \mathfrak{I}(X_2)=\mathfrak{I}(X_3)=0.$
- (d) Schätzen Sie die Laufzeit Ihres Algorithmus in Abhängigkeit zur Eingabegröße ab.

Aufgabe 2: 6 Punkte

- (a) Sei $\Phi := \{ \varphi_i : i \in \mathbb{N} \}$ eine unendliche Menge aussagenlogischer Formeln mit der Eigenschaft, daß es für jede Interpretation \mathfrak{I} ein $n \in \mathbb{N}$ gibt, mit $\llbracket \varphi_n \rrbracket^{\mathfrak{I}} = 1$. Weiterhin sei für alle i sowohl φ_i als auch $\neg \varphi_i$ erfüllbar. Zeigen Sie:
 - (i) Φ ist nicht notwendigerweise erfüllbar.
 - (ii) $\neg \Phi = {\neg \varphi_i : i \in \mathbb{N}}$ ist unerfüllbar.
 - (iii) Es gibt ein $k \in \mathbb{N}$, so dass $\bigvee_{i=0}^{k} \varphi_i$ eine Tautologie ist. Hinweis: Führen Sie den Beweis mit Hilfe des Kompaktheitssatzes sowie des Teils b).
- (b) Beweisen Sie die erste Aussage des Kompaktheitssatzes unter Verwendung des zweiten Teils des Satzes. Insbesondere heisst dies, dass Sie *nicht* den direkten Beweis aus der Vorlesung reproduzieren sollen!

Aufgabe 3: 5 Punkte

Die Relation $\models \varphi \to \psi$ kann folgendermaßen als (partielle) Ordungsrelation aufgefaßt werden: Es gilt $\varphi < \psi$ genau dann, wenn $\models \varphi \to \psi$, aber $\not\models \psi \to \varphi$.

- (i) Zeigen Sie, daß die so definierte Ordnung dicht ist, d.h. daß zu je zwei Formeln $\varphi < \psi$ eine Formel σ existiert, so dass $\varphi < \sigma < \psi$.
- (ii) Zeigen Sie, daß eine unendliche aufsteigende Kette $\varphi_1 < \varphi_2 < \varphi_3 < \dots$ existiert.
- (iii) Zeigen Sie, daß es für je zwei bzgl. < unvergleichbarer Formeln φ, ψ eine kleinste Formel σ gibt, mit $\varphi, \psi < \sigma$.

Aufgabe 4:

 ψ, φ seien aussagenlogische Formeln. Beweisen oder widerlegen Sie:

- (a) (i) $\psi \to (\varphi \to \psi)$ ist eine Tautologie.
 - (ii) $\psi \to (\varphi \to \theta) \equiv (\psi \land \varphi) \to \theta$.
 - (iii) $((\psi \to \varphi) \to \psi) \to \varphi$ ist eine Tautologie.
 - (iv) $(\psi \vee \varphi) \to \theta \equiv (\psi \to \theta) \vee (\varphi \to \theta)$.
- (b) Sei $maj_n(X_1, ..., X_n) := \begin{cases} 1 & |\{i : X_i = 1\}| \ge \frac{n}{2} \\ 0 & \text{sonst} \end{cases}$ Geben Sie eine aussagenlogische Formel $\psi(X_1, ..., X_n)$ an, welche maj_n definiert.
- (c) Welche der folgenden Systeme sind funktional vollständig: $(maj_2, \neg), (\neg maj_3, 1), (maj_3, 0, 1).$

Aufgabe 5:

Sei ψ eine Konjunktion von AL-Formeln der Form

- 1. $X_1 \wedge \ldots \wedge X_n \to Z_1 \vee Z_2$.
- $2. X_1 \wedge \ldots \wedge X_n \to 0.$
- (a) Ist ψ erfüllbar, wenn
 - (i) ψ keine Formel des Typs 2 enthält?
 - (ii) ψ keine Formel des Typs 1 mit n=0 enthält?

Geben Sie gegebenenfalls ein Modell an.

(b) Zeigen Sie mittels Resolution, dass

$$\psi \equiv (X_1 \wedge X_2 \rightarrow Z_1 \vee Z_2) \wedge (X_2 \rightarrow X_1) \wedge (Z_1 \wedge X_2 \rightarrow 0) \wedge (Z_2 \wedge X_2 \rightarrow 0) \wedge X_2$$

unerfüllbar ist.

Technische Hochschule Aachen Prof. Dr. E. Grädel WS 00/01

3. Übung Mathematische Logik

Abgabe: Dienstag, den 21.11.2000 zu Beginn der Vorlesung am AH V oder bis 14 Uhr am Lehrstuhl Übungstermin: Freitag, den 24.11.2000 in den Übungsgruppen

Aufgabe 1: 5 Punkte

Die folgende Einschränkung des Resolutionskalküls heißt P-Resolution: Es darf nur dann eine Resolvente aus den Klauseln C_1 und C_2 gebildet werden, wenn eine der beiden Klauseln positiv ist. Eine Klausel heißt positiv, falls sie nur positive Literale enthält. Zeigen Sie:

- (a) Jede Klauselmenge ohne positive Klauseln ist erfüllbar.
- (b) Eine aussagenlogische Formel ψ ist unerfüllbar genau dann, wenn \square durch P-Resolution aus $K(\psi)$ abgeleitet werden kann.

 $\mathit{Hinweis}$: Führen Sie den Beweis per Induktion über die Anzahl der in ψ vorkommenden Aussagenvariablen.

(c) Zeigen Sie per P-Resolution, dass die Klauselmenge

$$K = \{\{X, Y, Z\}, \{\neg X, V\}, \{\neg Y, X\}, \{\neg Z, V\}, \{\neg V\}\}$$

unerfüllbar ist.

Aufgabe 2:

Konstruieren Sie für die folgenden Sequenzen Beweise im Sequenzenkalkül oder falsifizierende Interpretationen:

(i)
$$\varnothing \Rightarrow (\varphi \land (\varphi \rightarrow \psi)) \rightarrow \psi$$

(ii)
$$(X \to Y), (Z \to Y) \Rightarrow (X \lor Z), \neg Y$$

(iii)
$$(X \to Y) \Rightarrow ((Z \to Y) \to (X \lor Z)) \to Y$$

(iv)
$$(X \vee Y), (Z \vee \neg Y) \Rightarrow (X \vee Z)$$

Aufgabe 3:

Geben Sie die Schlussregeln $(\oplus \Rightarrow)$ und $(\Rightarrow \oplus)$ für den Junktor \oplus ("exklusives oder") an. Konstruieren Sie im entsprechend erweiterten Sequenzenkalkül einen Beweis für die Sequenz

$$(\psi \oplus \varphi) \oplus \vartheta \Rightarrow \psi \oplus (\varphi \oplus \vartheta).$$

Aufgabe 4:

Ein Homomorphismus von einem Graphen G = (V, E) in einen Graphen G' = (V', E') ist eine Abbildung $f: V \to V'$, so dass für alle $(u, v) \in E$ auch $(fu, fv) \in E'$.

Sei G' ein endlicher und G ein unendlicher Graph. Zeigen Sie: Wenn für jeden endlichen Untergraph H von G (d.h. H=(U,F) mit $U\subseteq V$ und $F\subseteq E$) ein Homomorphismus von H nach G' existiert, dann existiert auch ein Homomorphismus von G nach G'.

Aufgabe 5:

Sei Φ eine Menge aussagenlogischer Formeln. Zeigen Sie: Ist Φ zu einer einzelnen nicht notwendigerweise in Φ enthaltenen Formel φ äquivalent, so ist Φ auch zu einer endlichen Teilmenge $\Phi' \subseteq \Phi$ äquivalent.

WS 00/01

Technische Hochschule Aachen Prof. Dr. E. Grädel

4. Übung Mathematische Logik

Abgabe: Dienstag, den 5.12.2000 zu Beginn der Vorlesung am AH V oder bis 14 Uhr am Lehrstuhl Übungstermin: Freitag, den 8.12.2000 in den Übungsgruppen

Aufgabe 1: 5 Punkte

Welche der folgenden Mengen sind abzählbar, welche überabzählbar?

- (a) Die Menge der endlichen Teilmengen von Q
- (b) Die Menge der Strukturen (\mathbb{N}, R) mit einstelligem Relationssymbol R.
- (c) Die Menge aller aussagenlogischen Formeln mit Aussagenvariablen X_1, X_2, \ldots
- (d) Die Menge aller unendlichen 0-1-Folgen.
- (e) Die Vereinigung abzählbar vieler abzählbarer Mengen.

Aufgabe 2: 5 Punkte

Zu G = (V, E) sei $G^* := (V, E, E^{\neq})$ mit $E^{\neq} := \{(x, y) \in V \times V : x \neq y\}$. Seien G = (V, E) und H = (W, F) ungerichtete Graphen.

- (a) Zeigen Sie, dass eine Abbildung $f:V\to W$ genau dann ein injektiver Homomorphismus von G nach H ist, wenn f ein Homomorphismus von G^* nach H^* ist.
- (b) Ein Hamiltonkreis in einem Graph ist ein Zyklus, der alle Knoten des Graphen genau einmal enthält. Geben Sie eine Familie G_n , $n \in \mathbb{N}$, von Graphen mit Universum $\{0, \ldots, n-1\}$ an, so daß ein Graph H mit n Knoten genau dann einen Hamiltonkreis enthält, wenn es einen Homomorphismus von G_n^* nach H^* gibt.
- (c) Zeigen Sie, daß G genau dann bipartit ist, wenn es einen Homomorphismus von G nach $\bullet \bullet$ gibt.

Aufgabe 3:

Untersuchen Sie für die unten angegebenen Tripel $(\mathfrak{A},\mathfrak{B},f:\mathfrak{A}\to\mathfrak{B})$, ob

- (a) f ein Homomorphismus
- (b) f ein Isomorphismus
- (c) f eine Einbettung von \mathfrak{A} in \mathfrak{B} ist.

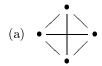
Dabei sei:

- (i) $\mathfrak{A} := (\mathbb{N}, max, min)$ $\mathfrak{B} := (\mathcal{P}(\mathbb{N}), \cup, \cap)$ $f(n) := \{0, \dots, n\}$
- (ii) $\mathfrak{A}:=(A,\cup,\cap)$ mit A:= Menge der endlichen Teilmengen von \mathbb{N} $\mathfrak{B}:=(\mathbb{N}, max, min)$ f(X):=|X|

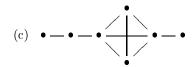
(iii)
$$\mathfrak{A} := (\mathbb{N} \times \mathbb{N}, Q)$$
 mit $Q := \{(n, m) : n \text{ und } m \text{ sind teilerfremd }\}$
 $\mathfrak{B} := (\mathbb{N}, P)$, mit $P := \{p : p \text{ ist Primzahl }\}$.
 $f(n, m) := (n \cdot m)! + 1$

Aufgabe 4:

Bestimmen Sie die Automorphismengruppe von







(d) $(\{0,\ldots,n\},<)$ für $n \in \mathbb{N}$.

Aufgabe 5:

Sei ${\mathfrak B}$ eine $\tau\text{-Struktur}$ mit Universum Bund sei $A\subseteq B.$

- (a) Zeigen Sie, dass es eine eindeutig bestimmte kleinste Substruktur $\mathfrak{C} \subseteq \mathfrak{B}$ gibt, welche A enthält. Wie nennen \mathfrak{C} die von A erzeugte Substruktur von \mathfrak{B} .
- (b) Geben Sie ein Beispiel für eine Struktur \mathfrak{B} mit endlicher Signatur τ und einer endlichen Teilmenge $A\subseteq B$, so dass die von A erzeugte Substruktur unendlich ist.
- (c) Geben Sie die von $\{\frac{1}{n} : n \in \mathbb{N}\}$ erzeugte Substruktur in $(\mathbb{R}, +, \cdot, 0, 1)$ an.
- (d) Zeigen Sie: Wenn τ und A abzählbar sind (und $\mathfrak B$ beliebig), dann ist die von A erzeugte Substruktur von $\mathfrak B$ ebenfalls abzählbar.

Technische Hochschule Aachen

Prof. Dr. E. Grädel

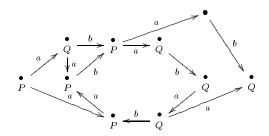
5. Übung Mathematische Logik

WS 00/01

Abgabe: Dienstag, den 19.12.2000 zu Beginn der Vorlesung am AH V oder bis 14 Uhr am Lehrstuhl Übungstermin: Freitag, den 22.12.2000 in den Übungsgruppen

Aufgabe 1: 6 Punkte

Gegeben sei folgendes Transitionssystem $T := (S, E_a, E_b, P, Q)$.



Geben Sie für jede der folgenden Formel
n die Menge der Zustände von T an, an denen die Formel gilt und beschreiben Sie die Bedeutung der Formel.

(a)
$$\varphi(x) := \forall y \forall z ((E_a xy \land E_b yz \rightarrow Pz) \land (E_a xy \land E_a yz \rightarrow \neg Pz))$$

(b)
$$\varphi(x_0) := \exists x_1 \exists x_2 \exists x_3 \exists x_4 \exists x_5 (\bigwedge_{i=1}^4 (E_a x_i x_{i+1} \lor E_b x_i x_{i+1}) \land E_b x_5 x_0 \land E_a x_2 x_3 \land \bigvee_{i=0}^5 Px_i)$$

(c)
$$\varphi(x) := \exists y \exists z (E_a xy \land E_b yz \land Qz) \land \forall y \forall z (E_a xy \land E_b yz \rightarrow (Qz \land \neg Py))$$

Aufgabe 2:

Wir erinnern an die Definition einer Wortstruktur $\mathcal{B}(w)$ für ein Wort w über einem endlichen Alphabet Σ . Sei φ ein FO-Satz über der Signatur der Wortstrukturen. Die durch φ definierte Sprache L_{φ} wird als Menge $\{w : \mathfrak{B}(w) \models \varphi\}$ definiert.

- (a) Geben Sie zu jeder der folgenden Sprachen eine FO-Formel an, die die Sprache definiert.
 - (i) $L_1 := abacab$
 - (ii) $L_2 := (abc)^*$
 - (iii) $L_3 := aba(cb)*ba$
- (b) Geben Sie für $i \in \mathbb{N}$ Formeln $\varphi_i(x)$ an, die das i-te Element des Universums definieren. Geben Sie weiterhin eine Formel $\max(x)$ an, welche das grösste Element definiert, und eine Formel $\mathrm{succ}(x,y)$, welche alle Paare (x,y) definiert, so dass y das auf x folgende Element ist. Ist x schon das grösste Element, so soll $\mathrm{succ}(x,y)$ für alle y falsch sein.
- (c) Welche Sprachen über dem Alphabet $\{a, b\}$ werden durch folgende Formeln definiert?
 - (i) $\varphi_1 := \exists x (\varphi_0(x) \land P_a(x)) \land \exists x (\varphi_1(x) \land P_b(x)) \land \forall x \forall y (\operatorname{succ}(x, y) \to (P_a x \leftrightarrow P_b y)) \land \exists x (\max(x) \land P_a x)$
 - (ii) $\varphi_2 := \exists x (\varphi_0(x) \land P_a x) \land \exists x (\max(x) \land P_b x) \land \exists x \exists y \exists z (P_a x \land P_b y \land P_a z)$

Aufgabe 3: 3 Punkte

Zeigen Sie:

- (a) $\varphi[x_1/t_1,\ldots,x_n/t_n] = \varphi[x_1/t_1]\cdots[x_n/t_n]$, falls für alle $i\neq j$ x_i nicht in t_j vorkommt.
- (b) $\varphi[x_1/t_1,\ldots,x_n/t_n]=\varphi[x_n/y][x_1/t_1,\ldots,x_{n-1}/t_{n-1}][y/t_n]$, falls y nicht in φ und den Termen t_1,\ldots,t_n vorkommt.
- (c) Verallgemeinern Sie (b) so, dass $\varphi[x_1/t_1, \ldots, x_n/t_n]$ aus φ mittels einer Komposition einfacher Substitutionen gewonnen werden kann.

Aufgabe 4: 5 Punkte

- (a) Wandeln sie folgende Formeln $\psi := \forall x (Exz \to \exists x ((\forall y Exy) \to Px))$ in Skolem-Normalform, Pränexnormalform und Negationsnormalform sowie in eine äquivalente reduzierte Formel um.
- (b) Sei g ein dreistelliges, f ein zweistelliges, t ein einstelliges und c ein nullstelliges Funktionssymbol. Geben Sie für die Formel $\varphi := x = gfftcxxgttcftxfxxcx$ eine äquivalente, termreduzierte Formel an.

Aufgabe 5: 6 Punkte

Sei $\mathfrak{A}_0 \subseteq \mathfrak{A}_1 \subseteq \cdots \subseteq \mathfrak{A}_n \subseteq \cdots$ eine Kette von τ -Strukturen. Wir können dann eine τ -Struktur $\mathfrak{A}_{\omega} := \bigcup_{n \in \mathbb{N}} \mathfrak{A}_n$ bilden, so dass $\mathfrak{A}_n \subseteq \mathfrak{A}_{\omega}$ für alle $n \in \mathbb{N}$.

- (a) Geben Sie die exakte Definition von \mathfrak{A}_{ω} an.
- (b) Zeigen Sie, dass alle Sätze der Form $\psi := \forall x_1 \cdots \forall x_r \exists y_1 \cdots \exists y_s \varphi \text{ (mit } \varphi \text{ quantorenfrei) abgeschlossen sind unter Vereinigung von Ketten, d.h. wenn <math>\mathfrak{A}_n \models \psi$ für alle n, dann auch $\mathfrak{A}_\omega \models \psi$.
- (c) Zeigen Sie, dass b) nicht für beliebige FO-Sätze gilt.
- (d) Sei \mathcal{K} die Modellklasse aller linearen Ordnungen $\mathfrak{A}=(A,<)$, die ein maximales Element enthalten. Geben Sie ein Axiomensystem für \mathcal{K} an und zeigen Sie, dass \mathcal{K} kein Axiomensystem aus Sätzen der Form $\psi=\forall x_1\ldots\forall x_n\exists y_1\ldots\exists y_m\varphi$ (mit φ quantorenfrei) besitzt.

Technische Hochschule Aachen Prof. Dr. E. Grädel WS 00/01

6. Übung Mathematische Logik

Abgabe: Dienstag, den 16.1.2001 zu Beginn der Vorlesung am AH V oder bis 14 Uhr am Lehrstuhl Übungstermin: Freitag, den 19.1.2001 in den Übungsgruppen

Aufgabe 1: 3 Punkte

Gegeben sei die Struktur $\mathfrak{A} := (\{a,b\}, P^{\mathfrak{A}})$, wobei P zweistellig mit $P^{\mathfrak{A}} := \{(a,b), (b,b), (a,a)\}$, sowie $\psi := \exists x (\forall y P y x \land \exists y \neg P x y)$ gegeben.

- (a) Geben Sie den Spielgraphen für das Auswertungsspiel auf ${\mathfrak A}$ und ψ an.
- (b) Geben Sie für einen der beiden Spieler eine Gewinnstrategie an. (Gewinnstrategien beginnen an der Wurzel!)

Aufgabe 2: 5 Punkte

Geben Sie einen Algorithmus an, der zu jedem endlichen Spielgraphen $G = (P, Z, p_0)$ in Zeit $\mathcal{O}(|P| + |Z|)$ berechnet, ob Spieler V für das Spiel G eine Gewinnstrategie hat.

Aufgabe 3:

In der Vorlesung wurden Transitionssysteme allgemein als Graphen mit Knoten- und Kantenbeschriftungen eingeführt. Neben dieser allgemeinen Definition kann man Transitionssysteme auch so definieren, daß man nur Knoten- oder nur Kantenbeschriftungen zuläßt.

Ordnen Sie jedem Transitionssystem $\mathcal{K} = (V, (E_a)_{a \in A}, (P_i)_{i \in I})$ Transitionssysteme $\mathcal{K}_1 := (V_1, (E_b)_{b \in B})$ und $\mathcal{K}_2 := (V_2, E, (P_j)_{j \in J})$, sowie jeder Formel ψ Formeln ψ_1 und ψ_2 zu, so daß für alle $v \in V$ gilt:

$$\mathcal{K}, v \models \psi \quad \Leftrightarrow \quad \mathcal{K}_1, v \models \psi_1 \quad \Leftrightarrow \quad \mathcal{K}_2, v \models \psi_2$$

Aufgabe 4: 3 Punkte

Seien K, K' Transitionssysteme ohne Blätter und ohne atomare Eigenschaften, also ohne Knotenbeschriftungen. K, v und K', v' heißen trace equivalent, wenn es für jedes unendliche Wort α über dem Alphabet der Kantenbeschriftungen genau dann einen mit α beschrifteten Pfad von v aus in K gibt, wenn es einen solchen auch von v' aus in K' gibt.

- (a) Zeigen oder widerlegen Sie, daß bisimilare Transitionssysteme auch trace equivalent sind.
- (b) Zeigen oder widerlegen Sie die Umkehrung dieser Aussage, d.h. sind je zwei Transitionssysteme die trace equivalent sind auch bisimilar?

Aufgabe 5: 6 Punkte

Wir betrachten Kripkestrukturen $\mathcal{K} = (V, E, (P_i)_{i \in I})$. Eine Formel $\psi \in ML$ ist gültig in \mathcal{K} , wenn $\mathcal{K}, v \models \psi$ für alle Zustände $v \in V$. Eine Formel ist gültig für den Rahmen (V, E), wenn sie gültig ist für alle Kripkestrukturen $(V, E, (P_i)_{i \in I})$.

- (a) Zeigen Sie, dass Formeln der Form $\Box(\psi \to \varphi) \to (\Box\psi \to \Box\varphi)$ in allen Kripkestrukturen gültig sind.
- (b) Zeigen Sie die Äquivalenz folgender Aussagen:
 - (i) E ist reflexiv.
 - (ii) Alle Formeln der Form $\Box \psi \to \psi$ sind gültig in (V, E).
 - (iii) Es gibt eine Aussagenvariable X, so dass $\Box X \to X$ gültig ist in (V, E).
- (c) Formulieren und beweisen Sie analoge Äquivalenzen für Formeln der Form $\Box \psi \to \Box \Box \psi$.
- (d) Welche Eigenschaften von E entsprechen den Formeln $\psi \to \Box \Diamond \psi$ und $\Diamond \psi \to \Box \psi$.

Aufgabe 6: 5 Punkte

Eine Formel $\varphi(x,y) \in FO$ (über der Signatur einer Kripkestruktur) ist sicher für Bisimulationen, wenn für alle Bisimulationen Z von \mathcal{K} nach \mathcal{K}' gilt: Wenn $(v,v') \in Z$ und ein w existiert, so dass $\mathcal{K} \models \varphi(v,w)$, dann existiert ein w', so dass $\mathcal{K}' \models \varphi(v',w')$ und $(w,w') \in Z$. In anderen Worten: Wenn die Hin- und Her-Bedingungen für die gegebenen Relationen E_a von \mathcal{K} bzw. \mathcal{K}' gelten, dann auch für die durch φ definierten neuen Relationen.

Welche der folgenden Formeln sind sicher für Bisimulationen?

(a)
$$\varphi(x,y) = E_a xy \vee E_b xy$$

(b)
$$\varphi(x,y) = \exists z (E_a xz \land E_b zy)$$

(c)
$$\varphi(x,y) = E_a xy \wedge E_b xy$$

(d)
$$\varphi(x,y) = \neg E_a xy$$

(e)
$$\varphi(x,y) = (y = x \land \forall z \bigwedge_{a \in A} \neg E_a xz)$$

Technische Hochschule Aachen Prof. Dr. E. Grädel WS 00/01

7. Übung Mathematische Logik

Abgabe: Dienstag, den 30.1.2001 zu Beginn der Vorlesung am AH V oder bis 14 Uhr am Lehrstuhl Übungstermin: Freitag, den 2.2.2001 in den Übungsgruppen

Aufgabe 1: 3 Punkte

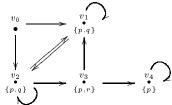
Beschreiben Sie das Auswertungsspiel für die Modallogik. Zeigen Sie, dass man jedem endlichen Transitionssystem \mathcal{K} , jedem Zustand v und jeder Formel $\psi \in \mathrm{ML}$, ein Spiel $\mathrm{MC}(\mathcal{K}, v, \psi)$ der Grösse $||\mathcal{K}|| \cdot |\psi|$ zuordnen kann, welches eine Gewinnstrategie für den Verifizierer genau dann zulässt, wenn $\mathcal{K}, v \models \psi$. Zusammen mit dem Algorithmus aus Aufgabe 2 Übung 6 ergibt sich hieraus also ein Linearzeit-Verfahren zum Model Checking modallogischer Formeln.

Aufgabe 2:

Sei $\mathfrak A$ eine endliche Struktur mit endlicher Signatur. Geben Sie ein endliches Axiomensystem für die Isomorphieklasse $\{\mathfrak B : \mathfrak A \cong \mathfrak B\}$ von $\mathfrak A$ an.

Aufgabe 3: 4 Punkte

Sei K die folgende Kripke-Struktur (mit atomaren Eigenschaften p, q, r):



Überprüfen Sie für jeden Zustand v des Systems, welche der folgenden Formeln an v gelten.

- (a) EGp
- (b) EF(AGp)
- (c) $AF(pUEG(p \rightarrow q))$
- (d) $EG(((p \land q) \lor r)U(rUAGp))$

Aufgabe 4: 4 Punkte

Ein universeller Horn-Satz ist eine Konjunktion von Regeln der Gestalt $\forall \bar{x} \forall \bar{y} (\alpha_1(\bar{x}, \bar{y}) \land \cdots \land \alpha_n(\bar{x}, \bar{y}) \rightarrow \beta(\bar{x}))$, wobei die α_i und β atomare Formeln sind. Man nennt $\alpha_1 \land \cdots \land \alpha_n$ den Rumpf und β den Kopf der Regel.

- (a) Der Durchschnitt zweier Strukturen $\mathfrak{A} := (A, R_1^{\mathfrak{A}}, \dots, R_k^{\mathfrak{A}})$ und $\mathfrak{B} := (B, R_1^{\mathfrak{B}}, \dots, R_k^{\mathfrak{B}})$ mit $A \cap B \neq \emptyset$ ist die Struktur $\mathfrak{A} \cap \mathfrak{B} := (A \cap B, R_1^{\mathfrak{A}} \cap R_1^{\mathfrak{B}}, \dots, R_k^{\mathfrak{A}} \cap R_k^{\mathfrak{B}})$. Zeigen Sie: Ist ψ ein universeller Horn-Satz, so gilt für alle Strukturen $\mathfrak{A}, \mathfrak{B}$ mit $\mathfrak{A} \models \psi$ und $\mathfrak{B} \models \psi$ auch $\mathfrak{A} \cap \mathfrak{B} \models \psi$.
- (b) Sei ψ ein universeller Horn-Satz der Signatur $\tau \dot{\cup} \{R\}$, so daß jede Regel in ψ den Kopf $R\bar{x}$ hat. Zeigen Sie: Zu jeder τ -Struktur $\mathfrak A$ gibt es eine eindeutig bestimmte kleinste Expansion $(\mathfrak A,R)$ mit $(\mathfrak A,R)\models \psi$.

Aufgabe 5: 7 Punkte

(a) Zeigen Sie, per Induktion über den Aufbau von CTL-Formeln, dass für alle $\psi \in$ CTL gilt: Wenn $\mathcal{K}, v \models \psi$ und $\mathcal{K}, v \sim \mathcal{K}', v'$, dann auch $\mathcal{K}', v' \models \psi$. Es folgt, dass CTL die Baummodell-Eigenschaft hat.

- (b) Formalisieren Sie folgende Aussagen in CTL bzw. erläutern Sie, warum sie nicht in CTL formalisiert werden können.
 - (i) Es gibt mindestens drei Pfade auf denen p irgendwann gilt.
 - (ii) Auf jedem Pfad, auf dem q mindestens zweimal gilt, gilt beim zweiten mal neben q auch p.

WS 00/01

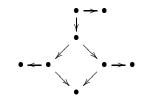
Technische Hochschule Aachen Prof. Dr. E. Grädel

8. Übung Mathematische Logik

Abgabe: Dienstag, den 13.2.2001 zu Beginn der Vorlesung am AH V oder bis 14 Uhr am Lehrstuhl Rückgabe: Freitag, den 16.2.2001 in der Vorlesung

Aufgabe 1: 4 Punkte

A:

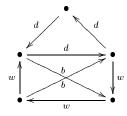


- (a) Welches ist das kleinste m, so dass Spieler I das Spiel $G_m(\mathfrak{A},\mathfrak{B})$ gewinnt?
- (b) Finden Sie einen Satz ψ mit Quantorenrang m, so dass $\mathfrak{A} \models \psi$ und $\mathfrak{B} \models \neg \psi$.

Aufgabe 2:

Gegeben sei ein Transitionssystem $T = (S, E_a, E_b, P, Q)$, wobei E_a und E_b zwei zweistellige und P, Q zwei einstellige Relationen seien.

- (a) Definieren Sie folgende Mengen mittels FO-Formeln:
 - (i) Die Menge aller Knotenpaare, die durch einen bab-Pfad verbunden sind.
 - (ii) Die Menge alles Knoten mit (mindestens) zwei mit P beschrifteten a-Vorgängern und (mindestens) zwei mit Q beschrifteten b-Nachfolgern.
- (b) Definieren Sie folgende Mengen mittels RA-Ausdrücken:
 - (i) Die Menge aller Knoten mit zwei a-Vorgängern und einem b-Nachfolger.
 - (ii) Die Menge aller mit P beschrifteten Knoten, die als mittlere Knoten auf einem abba-Pfad auftreten, dessen erster und letzter Knoten mit Q beschriftet ist.
- (c) Gegeben sei folgende Version des Hauses vom Nikolaus.



Geben Sie für jede der folgenden Formeln bzw. RA-Ausdrücke, die definierte Menge von Knoten an und beschreiben Sie die Bedeutung der Formeln.

(i) $\varphi(x) := \exists y \exists z (E_d x y \land E_d y z \land E_d z x \land x \neq y \land x \neq z \land y \neq z).$

(ii)
$$\pi_1 \sigma_{2=3} \sigma_{4=5} \sigma_{6=7} \sigma_{8=1} (E_w \times E_d \times E_w \times E_w)$$
.

Aufgabe 3:

(a) Beweisen Sie die Korrektheit der Quantorenregeln $(\exists \Rightarrow)$, $(\forall \Rightarrow)$ und $(\Rightarrow \forall)$. Zeigen Sie, dass in den Regeln $(\exists \Rightarrow)$ und $(\Rightarrow \forall)$ die Bedingung, dass c nicht in Γ, ψ und Δ vorkommt, nicht weggelassen werden kann.

(b) Beweisen oder widerlegen Sie die Korrektheit der folgenden Regel.

$$\frac{\Gamma, \psi \Rightarrow \Delta, \vartheta}{\Gamma \Rightarrow \Delta, \psi \leftrightarrow \vartheta}$$

- (c) Beweisen oder widerlegen Sie mit Hilfe des Sequenzenkalküls die Gültigkeit folgender Formeln:
 - (i) $((\varphi \land \psi) \to \neg \varphi) \to \psi$.
 - (ii) $\neg \exists x \varphi(x) \leftrightarrow \forall x \neg \varphi(x)$.

Hinweis: Die Gültigkeit von Formeln entspricht der Korrektheit gewisser Sequenzen.

Aufgabe 4: 6 Punkte

Sei f ein einstelliges Funktionssymbol.

- (a) Sei $\mathcal{K}_1 := \{(A, f) : \text{ für jedes } a \in A \text{ gibt es unendlich viele } b \text{ mit } f(b) = a\}$. Zeigen Sie, dass \mathcal{K}_1 axiomatisierbar ist. Zeigen Sie ferner mit Hilfe des Satzes von Ehrenfeucht und Fraïssé, dass \mathcal{K}_1 nicht endlich axiomatisierbar ist.
- (b) Sei $\mathcal{K}_2 := \{(A, f) : \text{ für alle } a, b \in A \text{ existieren } n, m \in \mathbb{N} \text{ mit } f^n(a) = f^m(b)\}$. Zeigen Sie mit Hilfe des Kompaktheitssatzes, dass \mathcal{K}_2 nicht axiomatisierbar ist.

Aufgabe 5:

Sei f ein einstelliges Funktionssymbol. Welche der folgenden Klassen von $\{f\}$ -Strukturen sind FO-axiomatisierbar, welche endlich axiomatisierbar? Begründen Sie ihre Antwort und geben Sie gegebenenfalls ein Axiomensystem an.

 $K_1 = \{(A, f) : f \text{ ist injektiv aber nicht surjektiv } \}.$

 $K_2 = \{(A, f) \in K_1 : A \text{ endlich } \}.$

 $K_3 = \text{die Klasse aller } \{f\}$ -Strukturen, welche isomorph sind zu (\mathbb{N}, f) , mit f(n) = n + 1.

 $K_4 = \text{die Klasse aller "überabz" ählbaren } \{f\}$ -Strukturen.

 $K_5 = \{(A, f) : \text{ für alle } a \in A \text{ gilt } |\{f^n(a) : n \in \mathbb{N}\}| \le 753\}.$

 $K_6 = \text{die Klasse der endlichen } \{f\}$ -Strukturen in K_5 .

Technische Hochschule Aachen

Prof. Dr. E. Grädel

WS 00/01

Probeklausur Mathematische Logik

8 Punkte Aufgabe 1:

 ψ, φ seien aussagenlogische Formeln. Beweisen oder widerlegen Sie:

- (i) $\psi \to (\varphi \to \psi)$ ist eine Tautologie.
 - (ii) $\psi \to (\varphi \to \theta) \equiv (\psi \land \varphi) \to \theta$.
 - (iii) $((\psi \to \varphi) \to \psi) \to \varphi$ ist eine Tautologie.
 - (iv) $(\psi \vee \varphi) \to \theta \equiv (\psi \to \theta) \vee (\varphi \to \theta)$.
- (b) Sei $maj_n(X_1, ..., X_n) := \begin{cases} 1 & |\{i : X_i = 1\}| \ge \frac{n}{2} \\ 0 & \text{sonst} \end{cases}$

Geben Sie eine aussagenlogische Formel $\psi(X_1,\ldots,X_n)$ an, welche maj_n definiert.

(c) Welche der folgenden Systeme sind funktional vollständig: $(maj_2, \neg), (\neg maj_3, 1), (maj_3, 0, 1)$.

6 Punkte Aufgabe 2:

- (a) Formulieren Sie den Satz von Ehrenfeucht und Fraïssé. Erläutern Sie die dabei auftretenden Begriffe.
- (b) Wie verwendet man diesen Satz, um nachzuweisen, dass eine Modellklasse K nicht endlich axiomatisierbar ist?
- (c) Zeigen Sie, dass die Klasse $\mathcal{K}:=\{(A,E): E \text{ ist Äquivalenz relation auf } A, \text{ so dass jede}$ Äquivalenzklasse entweder höchstens 13 oder aber unendlich viele Elemente hat } nicht endlich axiomatisierbar ist.

Aufgabe 3: 8 Punkte

- (a) Erläutern Sie in eigenenen Worten, was es bedeutet, dass
 - (i) eine Sequenz $\Gamma \Rightarrow \Delta$ gültig ist.
 - (ii) eine Regel

$$\frac{\Gamma \Rightarrow \Delta}{\Gamma' \Rightarrow \Delta'}$$

korrekt ist.

- (b) Welche der folgenden Sequenzen sind gültig, welche Regeln korrekt. Begründen Sie Ihre Antworten.
 - (i) $\exists x \varphi(x) \Rightarrow \varphi(c)$, wenn c nicht in φ vorkommt.
 - (ii) $\varphi(c), \varphi(d), \forall z \forall z' (\neg \varphi(z) \lor z = z' \lor \neg \varphi(z')) \Rightarrow c = d.$

(iii) $\Gamma \Rightarrow \Delta$, wobei $\Gamma := \{ \forall x \neg Exx, \forall x \forall y (x = y \lor Exy \lor Eyx), \forall x \forall y \forall z (Exy \land Eyz \rightarrow Exz) \} \text{ und } \Delta := \{ \forall x \forall y (Exy \lor Eyx), \neg \exists x \exists y (Exy \land Eyx) \}.$

(iv)

$$\frac{\Gamma, \psi \Rightarrow \Delta \qquad \Gamma, \varphi \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \psi \land \varphi}.$$

- (c) Beweisen oder widerlegen Sie mit Hilfe des Sequenzenkalküls die Gültigkeit folgender Formeln:
 - (i) $((\varphi \land \psi) \rightarrow \neg \varphi) \rightarrow \psi$.
 - (ii) $\neg \exists x \psi(x) \rightarrow \forall x \neg \psi(x)$.

Aufgabe 4: 3 Punkte

Sei f ein zweistelliges, g ein einstelliges Funktionssymbol und P, E seien zweistellige Relationssymbole. Weiterhin sei $\psi := Pxx \wedge \forall x \; ((\exists y \; Pyx \wedge \exists y \; Pxy) \wedge \forall z \; Ezy)$

- (a) Bilden Sie $\psi[x/fyy, y/gx]$.
- (b) Geben Sie eine zu ψ äquivalente Formel φ in Pränex-Normalform an.
- (c) Transformieren Sie φ zu einer Formel in Skolem-Normalform.

Aufgabe 5:

- (a) Seien ψ in KNF und φ in DNF aussagenlogische Formeln. Erläutern Sie wie man mittels Resolution zeigt, dass
 - (i) ψ unerfüllbar ist.
 - (ii) φ allgemeingültig ist.
 - (iii) $\psi \models \varphi$.
- (b) Zeigen Sie mittels Resolution, dass

$$\psi \equiv \neg((X_1 \to X_2) \to X_3) \lor \neg(X_1 \lor X_2) \lor (X_2 \land X_3) \lor \neg(X_1 \to X_2)$$

allgemeingültig ist.

(c) Zeigen Sie mittels Resolution, dass

$$(\neg X_1 \rightarrow X_2) \land (X_3 \rightarrow X_2) \land (\neg X_3 \rightarrow \neg X_4) \land (X_1 \land X_3 \rightarrow X_5) \models X_2 \lor \neg X_4 \lor X_5$$

Aufgabe 6: 6 Punkte

Welche der folgenden Klassen von Strukturen sind FO-axiomatisierbar, welche endlich axiomatisierbar? Begründen Sie Ihre Antwort und geben Sie gegebenenfalls ein Axiomensystem an.

 K_1 = Die Klasse aller diskreten linearen Ordnungen (A,<) ohne kleinstes und grösstes Element, z.B. $(\mathbb{Z},<)$.

 K_2 = Die Klasse aller abzählbaren Strukturen in \mathcal{K}_1 .

 K_3 = Die Klasse aller Strukturen, die zu (\mathbb{R} , <) isomorph sind.

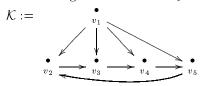
 K_4 = Die Klasse aller partiellen Ordnungen (A, <), so dass es zu jedem $a \in A$ höchstens 4 Elemente $b \in A$ gibt mit a < b.

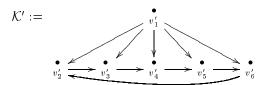
 K_5 = Die Klasse aller partiellen Ordnungen, welche zu (Pot $\{1, 2, 3\}, \subseteq$) isomorph sind.

 K_6 = Die Klasse aller endlichen linearen Ordnungen.

Aufgabe 7:

Gegeben seien folgende Transitionssysteme:

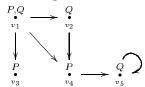




- (a) Sind \mathcal{K}, v_1 und \mathcal{K}', v_1' bisimilar? Wenn ja, geben Sie eine Bisimulation an. Wenn nein, begründen Sie Ihre Antwort.
- (b) Welches ist das kleinste m, so daß Spieler I das Spiel $G_m(\mathcal{K}, \mathcal{K}')$ gewinnt?
- (c) Geben Sie Formeln $\varphi \in ML$ und $\psi \in FO$ mit $qr(\psi) = 3$ an, so daß $\mathcal{K}, v_1 \models \varphi$ und $\mathcal{K}', v_1' \not\models \varphi$, bzw. $\mathcal{K} \models \psi[v_1]$ und $\mathcal{K}' \not\models \psi[v_1']$ oder begründen Sie, warum solche Formeln nicht existieren.

Aufgabe 8:

- (a) Sei $A := \{a,b\}$ eine Menge von Aktionen und $I := \{P,Q\}$ eine Menge atomarer Eigenschaften. Geben Sie jeweils in FO, RA und ML eine Formel an, die in Kripke-Strukturen mit Aktionen aus A und atomaren Eigenschaften aus I die Menge aller Knoten definiert, die keine Nachfolger haben oder aber durch einen ab-Pfad mit solchen verbunden sind.
- (b) Sei K folgendes Transitionssystem:



Geben Sie für jede der folgenden Formeln die Knoten an, an denen die Formel gilt:

- (i) $\varphi(x) := \forall y (Exy \to ((Px \leftrightarrow Py) \land (Qx \leftrightarrow Qy))).$
- (ii) $\pi_1[(\pi_{1,4}\sigma_{2=3}(E \times E)) P \times P]$
- (iii) $\Box(\neg P \land \neg Q) \lor \Diamond \Box Q$

Aufgabe 9:

Gegeben sei die Struktur $\mathfrak{A} := (\{a,b\}, P^{\mathfrak{A}})$, wobei P zweistellig mit $P^{\mathfrak{A}} := \{(a,b), (b,b), (a,a)\}$, sowie $\psi := \exists x (\forall y P y x \land \exists y \neg P x y)$ gegeben.

- (a) Geben Sie den Spielgraphen für das Auswertungsspiel auf $\mathfrak A$ und ψ an.
- (b) Geben Sie für einen der beiden Spieler eine Gewinnstrategie an. (Gewinnstrategien beginnen an der Wurzel!)