Kapitel 1: Aussagenlogik Induktiver Aufbau

 $0,1 \in AL$ (Boolsche Konstanten) $\tau \subseteq AL$ (Variablen)

 $\psi, \varphi \in AL$. Dann $\neg \psi, (\psi \land \varphi), (\psi \lor \varphi), (\psi \to \varphi), (\psi \leftrightarrow \varphi) \in AL$

AL-Interpretation, Modellbeziehung

Interpretation: $\mathcal{J}: \sigma \to \{0,1\}, \sigma \subseteq \tau$ passendes $\mathcal{J}:$ zumindest jede Variable aus ψ wird belegt passentes \mathcal{J} . Zumindest jete variable also ψ with delete \mathcal{J} (0) = 0, \mathcal{J} (1) = 1, \mathcal{J} ($\neg \psi$) = 1 - \mathcal{J} (ψ), \mathcal{J} (ψ) $\wedge \varphi$) = $min(\mathcal{J}(\psi), \mathcal{J}(\varphi)), \mathcal{J}(\psi \vee \varphi) = max(\mathcal{J}(\psi), \mathcal{J}(\varphi)), \mathcal{J}(\psi \to \varphi) = \mathcal{J}(\neg \psi \vee \varphi), \mathcal{J}(\psi \leftrightarrow \varphi) = \mathcal{J}((\psi \to \varphi) \wedge (\varphi \to \psi))$ Modellbeziehung $\mathcal{J} \models \psi \Leftrightarrow \mathcal{J}(\psi) = 1$ (\mathcal{J} erfüllt ψ), $\mathcal{J} \models \Phi$ gdw. $\mathcal{J} \models \varphi$ für alle $\varphi \in \Phi$

Tautologie (allgemeingültig): $\models \psi$ für alle $\mathcal J$

erfüllbar es existiert \mathcal{J} mit $\mathcal{J} \models \psi$ logisch äquivalent: $\psi \equiv \varphi$ gdw. $\mathcal{J} \models \psi \Leftrightarrow \mathcal{J} \models \varphi$

Koinzidenzlemma

Wenn \mathcal{J} und \mathcal{J}' zwei zu ψ passende Interpretationen sind mit $\mathcal{J}(X) = \mathcal{J}'(X)$ für alle $X \in \tau(\psi)$, dann gilt $\mathcal{J}(\psi) = \mathcal{J}'(\psi)$.

Äquivalente Normalformen: DNF $(\lor \land Y_i)$ und KNF $(\land \lor Y_i)$. Y. Literale

Funktionale Vollständigkeit

zu jeder Formel gibt es eine boolsche Funktion, z.B. $f_{0000}(00) = 0, f_{0010}(00) = 0, f_{0000}(01) = 0, f_{0010}(01) = 0$ $\begin{array}{l} f_{0000}\left(10\right)=0, f_{0010}\left(10\right)=1, f_{0000}\left(11\right)=0, f_{0010}\left(11\right)=0\\ \left\{ \Lambda, \vee, \rightarrow \right\} \text{ nicht fkt.vollst., da für alle mit den diesen Junktoren gebildeten } \psi(X_1, \ldots, X_n) \text{ gilt: } \psi[1, \ldots, 1]=1. \quad \neg \text{ kann nicht} \end{array}$ dargestellt werden.

Hornformeln: KNF mit folgenden Disjunktionen: (1) $\neg X_1 \lor \cdots \lor \neg X_k \lor X \equiv X_1 \land \cdots \land X_k \to X$ (2) $\neg X_1 \lor \cdots \lor \neg X_k \equiv X_1 \land \cdots \land X_k \to 0$

Erfüllbarkeitstest für Hornformeln (Algorithmus)

 $N = \emptyset, M := \{X \in \tau(\psi) : \psi \text{ enthält } C_i \text{ der Form } (1 \to X)\}$ while $N \neq M$ do begin N := M

 $\begin{array}{l} M:=M\cup\{X:\psi \text{ enthält } C_i \text{ der Form } (X_1\wedge\ldots\wedge X_k)\to X \text{ mit } \{X_1,\ldots,X_k\}\subseteq M\} \\ \text{if } \psi \text{ enthält } C_i \text{ der Form } (X_1\wedge\ldots\wedge X_k)\to 0 \text{ mit } \{X_1,\ldots,X_k\}\subseteq M \end{array}$

then $output(\psi unerfüllbar)$

 $\mathtt{output}(\psi \ \mathtt{erf\ddot{u}llbar} \ \mathtt{mit} \ \mathcal{J}_M)$

M definiert Belegung \mathcal{J}_M mit $\mathcal{J}_M(X) \equiv 1$ gdw. $X \in M$.

Semantische Folgerungsbeziehung

 $\Phi \models \psi$ gdw. jede zu $\Phi \cup \{\psi\}$ passende Interpretation, welche Modell von Φ ist, auch Modell von ψ ist.

Endlichkeitssatz (Kompaktheitssatz)

(1) Φ ist erfüllbar gdw. jede endliche Teilmenge von Φ erfüllbar ist. (2) $\Phi \models \psi$ gdw. eine endliche Teilmenge $\Phi_0 \subseteq \Phi$ existiert mit $\Phi_0 \models \psi$

Lemma von Zorn

Sei (A, <) eine nicht-leere partielle Ordnung in der jede Kette nach oben beschränkt ist. Dann besitzt (A, <) min. ein maximales Element.

Sei T ein endlich verzweigter Baum mit Wurzel w_+ in dem es beliebig lange endliche Wege gibt. Dann gibt es auch einen unendlichen Weg in T, der bei w beginnt

 \mathcal{G} ist k-färbbar wenn es $f: V \to \{1, \dots, k\}$ gibt, so daß $f(p) \neq$ f(q) für alle Kanten p, q.

Resolution (KNF, Klauselmenge)

Verfahren, syntaktisches um Unerfüllbarkeit von Formeln nachzuweisen, indem positive und negative Literale der Klauseln gegeneinander ausgespielt werden und die leere Klauselmenge abgeleitet wird.

Resolutionslemma: Sei K Klauselmenge, $C_1, C_2 \in K$ und C Re-

solvente von C_1,C_2 . Dann sind K und $\overset{\circ}{K}\cup \{\overset{\circ}{C}\}$ äquivalent. Resolutionssatz: Eine Klauselmenge K ist unerfüllbar gdw. \square \in $Res^*(K)$

Einheitsresolution für Hornformeln: einelementige Klausel mit Klauselmenge resolvieren (vgl.Resolution, zeigt im Gegensatz zu Hornformel-Algorithmus nur Unerfüllbarkeit an)

 $\mathbf{AL\text{-}Sequenzenregeln:} \ \neg, \, V, \, \Lambda, \, \rightarrow, \ \text{jeweils im Antezedens und Sukzedens (vgl. FO-SK)}$

Sequenz: $\Lambda \Gamma \Rightarrow \vee \Delta$

Axiom: $\Gamma, \psi \Rightarrow \Delta, \psi$

Schlussregel besteht aus Prämisse und Konklusion $\mathcal J$ falsifiziert die Sequenz $\Gamma\Rightarrow\Delta_+$ falls $\mathcal J$ alle Formeln aus Γ_+ aber keine aus \Delta wahr macht.

 $\Gamma \Rightarrow \Delta$ ist gültig, falls jedes Modell von Γ auch Modell mindestens einer Formel aus Δ ist

Korrektheit: aus gültigen Sequenzen können nur gültige Sequenzen abgeleitet werden (da Axiome gültig und Schlussregeln korrekt sind) Vollständigkeit: alle gültigen Sequenzen können abgeleitet werden.

Kapitel 2: Strukturen und Homomorphismen

Abzählbarkeit: Bijektion auf natürliche Zahlen, Diagonalisierungsargument als Gegenbeweis $f:A\to B$ bijektiv: $\forall a \forall a' (a \neq a' \to fa \neq fa') \land \forall b \exists a (fa = b)$, $a, a' \in A, b \in B$

Eine Struktur besteht aus Universum und Interpretationsfunktion, welche Funktionen (0-st.Fkt. sind Konstanten) und Relationen aus der Signatur über der Struktur interpretiert (auf das Universum bezieht)

Relationale Strukturen (nur Relationssymbole), algebraische Strukturen (nur Funktionssymbole), Signatur: der Vorrat an Funktionen und Relationen (funktionale Signatur: Algebra)

Substruktur (dual: Erweiterung): Einschränkung des Universums, Restriktion der Funktionen, Relationen auf die Werte, die im eingeschränkten Universum vorkommen

Redukt (dual: Expansion): Einschränkung der Signatur (Weglassen der Funktionen und Relationen, die nicht im Schnitt der Signaturen liegen)

Beispielstrukturen

Mengen sind Strukturen mit leerer Signatur.

Graph $\mathcal{G} = (V, E)$, für $u, v \in V$ gilt: $(\forall v \neg E v v) \land (\forall u \forall v (E u v \rightarrow v))$

partielle Ordnung: irreflexiv ($\forall a \neg a < a$), transitiv ($a < b \land b < c \rightarrow a$ a < c

Transitionssystem

Arithmetik $\tau_{ar} = \{+, \cdot, 0, 1\}$ Boolsche Algebra $BA(A) = \{\mathcal{P}(A), \cup, \cap, \emptyset, A\}$

Gruppe $\mathcal{G} = (G, \circ, e, \stackrel{\sim}{-1})'$

Aktiver Domain: anstelle des (möglicherweise unendlichen) Universums betrachtet man $ad(\mathcal{D})$, welcher aus denjenigen Objekten besteht, die in einer der Relationen bzw. Funktionen vorkommen.

Homomorphismus (strukturerhaltende Abbildung): $\pi:A\to$ B und:

(1) für $R \in R^n(\tau)$ und $a_1, \ldots, a_n \in A$ gilt: $(a_1, \ldots, a_n) \in R^A \Rightarrow$ $(\pi a_1, \ldots, \pi a_n) \in A$

(2) für $f \in F^n(\tau)$ und $a_1, \ldots, a_n \in A$ gilt: $\pi f^A(a_1, \ldots, a_n) =$ $f^{\mathcal{B}}(\pi a_1, \ldots, \pi a_n)$

starker Homomorphismus: es gilt sogar $\bar{a} \in R^{\mathcal{A}} \Leftrightarrow \pi \bar{a} \in R^{\mathcal{B}}$

Einbettung: injektiver starker Homomorphismus Automorphismus: bijektiver Homomorphismus (Isomorphismus) in

der selben Struktur

Automorphismengruppe: starr, falls $Aut(A) = \{1_A\}$ $(\mathbf{Z}, +, 0) = \operatorname{Aut}((\mathbf{Z}, <))$

 $\overset{\circ}{\mathrm{A}}$ quivalenzrelation $R:\ Rxx_+Rxy \to Ryx_+Rxy \land Ryz \to Rxz_-$

Äquivalenzklasse: $[a]_R := \{b : (a, b) \in R\}$ **Kongruenzrelation**:

(1) Wenn $[a_1] = [b_1], \dots, [a_n] = [b_n], \text{ dann } [f^{calA}(a_1, \dots, a_n)] = [f^A(b_1, \dots, b_n)]$

 $(2) (a_1, \dots, a_n) \in R^{\mathcal{A}} \Leftrightarrow (b_1, \dots, b_n) \in R^{\mathcal{A}}$

Äquivalenzklassen bzgl. einer Kongruenzrelation heißen Kongruen-

Quotientenstruktur A/.

- (1) Universum $A/\sim := \{[a]: a \in A\}$ der Kongruenzklassen von A (2) $f^{A/\sim}([a_0], \dots, [a_{n-1}]) := [f^A(a_0, \dots, a_{n-1})]$ (3) $([a_0], \dots, [a_{n-1}]) \in R^{A/\sim} \Leftrightarrow (a_0, \dots, a_{n-1})inR^{A/\sim}$

Homomorphiesatz: Für jeden Homomorphismus $\pi: \mathcal{A} \to \mathcal{B}$ zwischen τ -Algebren ist $\mathcal{A}/_{E_{\pi}} \cong \pi(\mathcal{A})$

Kapitel Syntax und Semantik Prädikatenlogik

FO-Terme: $VA\tilde{R} \subseteq T(\tau)$, wenn $t_1, \ldots, t_n\tau$ -Terme und $f \in F^n(\tau)$,

so ist auch $ft_1 \dots t_n$ ein τ -Term. Grundterm: Term ohne Variablen (nur Funktionen bzw. Konstan-

Formeln:

- (1) Sind $t_1, t_2\tau$ -Terme, dann ist $t_1 = t_2$ eine τ -Formel. (2) Sind $t_1, \ldots, t_n\tau$ -Terme und $P \in R^n(\tau)$, so ist $Pt_1 \ldots t_n$ eine
- (3) Wenn ψ eine au-Formel ist, dann auch $\neg \psi$
- (4) Wenn ψ und $\varphi \tau$ -Formeln sind, dann auch $(\psi \wedge \varphi)_+(\psi \vee \varphi)_+(\psi \rightarrow \varphi)_+$ φ) und $(\psi \leftrightarrow \varphi)$.
- (5) Wenn ψ eine τ -Formel ist und $x \in VAR$, dann sind $\exists x \psi$ und $\forall x \psi \tau$ -Formeln.

atomare Formeln: (1),(2) - Literale: (1),(2),(3) - quantorenfreie Formeln: (1),(2),(3)(4)

 $x \in VAR$ ist **gebunden**, falls x in einer Unterformel der Form $\exists x \psi$ oder $\forall x \psi$ vorkommt, andernfalls heißt x frei.

FO-Interpretation, Modellbeziehung: $\mathcal{J}(A, \beta)$ ordnet jedem

Term $t \in T(\tau)$ ein $t^{\mathcal{J}} \in A$ und jedem $\psi \in FO(\tau)$ ein $\mathcal{J}(\psi) \in \{0,1\}$ (induktiv) zu. $\mathcal{J} \models \psi : \psi$ gilt in \mathcal{A} unter β

Koinzidenzlemma: $\psi \in FO(\sigma \cap \tau)_+(\mathcal{A}, \beta) = \mathcal{J}_{\sigma_+}(\mathcal{A}', \beta') = \mathcal{J}_{\tau}$

(1) $\mathcal{A} \mid \sigma \cap \tau = \mathcal{A}' \mid \sigma \cap \tau$ (2) $\operatorname{Frei}(\psi) \subseteq \operatorname{Def}(\beta) \cap \operatorname{Def}(\beta')$ und $\beta(x) = \beta'(x)$ für alle $x \in \operatorname{Frei}(\psi)$ Dann: $\mathcal{A} \models \psi[\beta]$ gdw. $\mathcal{A}' \models \psi[\beta']$

Modellklasse $Mod(\Phi)$: Menge aller τ -Strukturen \mathcal{A} , die Modell zum Axiomensystem Φ sind.

Semantische Folgerungsbeziehung, Erfüllbarkeit, logische Äquivalenz wie in AL

Termalgebra $\mathcal{T}(X)$: τ sei funktionale Signatur, Universum ist die Menge aller τ -Terme mit Variablen aus $X\subseteq VAR$. Es gilt: $f^{\mathcal{T}(X)}(t_1,\ldots,t_n):=ft_1\ldots t_n$

Substitution: simultane Ersetzung, ggf.gebundene Variablen um-

Eine Substitution $\rho:VAR \to T(\tau)$ hat **endlichen Support**, wenn sie nur endlich viele $x \in VAR$ verändert.

Substitutions lemma: $\rho = (x_1/t_1, \dots, x_k/t_k)$

(1) $t[\rho]^{\mathcal{J}} = t^{\mathcal{J} \circ \rho}$ (2) $\mathcal{J} \models \psi[\rho] \Leftrightarrow (\mathcal{J} \circ \rho) \models \psi$ **Ersetzungslemma**: Erhaltung der Äquivalenz bei Substitution durch äquivalente Formeln

 $\mathbf{reduzierte} \ \mathbf{Formel} \colon \ \mathrm{Nur} \ \mathsf{V}, \ \lnot, \ \exists \ \mathrm{sind} \ \mathrm{erlaubt}.$

positive NF: durch Hineinziehen der Negationen erreicht man eine Formel, die keine Negationen, außer in den Literalen, enthält. \rightarrow , \leftrightarrow sind nicht erlaubt.

termreduzierte durch Einführen Funktions-, Relationssymbole erreicht man, daß Terme eine Maximaltiefe von eins haben (d.h. keine Verschachtelungen).

Pränex-NF: Quantoren nach außen ziehen, gleichnamige freie Variablen müssen substituiert werden. \rightarrow , \leftrightarrow sind nicht erlaubt.

Skolem-NF: Entfernen der Existenzquantoren der Pränex-NF von außen nach innen, Ersetzen durch ein neues Funktionssymbol, das abhängig von den äußeren Variablen ist.

 $\mathbf{MC\text{-}Spiel}, \ \mathbf{Regeln} \colon \ \psi \ \text{in pos.NF}, \ \mathrm{Literal} \colon \! \mathrm{Ende}, \ \forall \colon \! V, \ \land \colon \! F, \ \exists \colon \! V,$

Spielgraph: Wurzel:Formel, Knoten:alle möglichen wählbaren Unterformeln, Blatt:Literal

Kapitel 4: Definierbarkeit und elementare Aquivalenz

 \mathcal{K} **FO-axiomatisierbar**: Existenz einer Satzmenge Φ_+ so daß $\mathcal{K} =$ $Mod(\Phi)$

Jedes endliche Axiomensystem kann durch einen Satz ausgedrückt werden $(\land \varphi_i, \varphi_i \in \Phi)$ **Beispiele**: Graphen,Gruppen,lineare und partielle Ordnun-

gen, Äquivalenzstrukturen, Ringe, Körper

Definierbarkeit

 ψ definiert in $\mathcal A$ die Relation: $\psi^{\mathcal A}:=\{(a_1,\ldots,a_r): \mathcal A\models\psi(a_1,\ldots,a_r)\}\subseteq A^r$

R elementar definierbar, falls $R=\psi^{\mathcal{A}}$, f elementar definierbar, falls Graph(f) elementar definierbar ist.

Konstante a ist termdefinierbar, wenn Grundterm $t \in T(\tau)$ existiert $mit t^{A} = a$

Relativierte Quantoren: $\exists x(\alpha \land \ldots) \forall x(\alpha \rightarrow \ldots)$ oder $(\exists x.\alpha)...(\forall x.\alpha)...$

Isomorphielemma: Sei π : $\mathcal{A} \tilde{\rightarrow} \mathcal{B}$ Isomorphismus von τ -Strukturen. Dann gilt für alle $\psi(x_1,\ldots,x_n)$ und $a_1,\ldots,a_n\in A$: $\mathcal{A}\models\psi(a_1,\ldots,a_n)\Leftrightarrow\mathcal{B}\models\psi(\pi a_1,\ldots,\pi a_n)$ Es gilt weiterhin: $\mathcal{A}\in\mathcal{K},\mathcal{A}\cong\mathcal{B}\Rightarrow\mathcal{B}\in\mathcal{K}$

Relationale Algebra, RA:

 $\pi_{1,2,3,4}\sigma_{5=2}\sigma_{6=1}\sigma_{7=1}\sigma_{8=4}\sigma_{9=4}(Univ^4 \times R)$ entspricht $\exists x_9 (Rx_5 \dots x_9 \land x_5 = x_2 \land x_6 = x_1 \land x_7 = x_1 \land x_8 = x_$

Formel $\varphi \to RA^+$, m sei die Anzahl der freien Variablen in φ : $x_i = x_j$ zu $\sigma_{i=j}Univ^m$

 $\begin{array}{lll} \pi_1 & = \pi_1 \times \pi_1 & = \pi_2 \times \pi_1 \\ \pi_{i_1} & \dots & \pi_i & \text{su } \pi_1 \dots & \pi_{m+1=i_1} \dots & \sigma_{m+s=i_s} \left(U \, niv^m \times R \right) \\ \neg \vartheta & \text{zu } \left(U \, niv^m - R_\vartheta \right) \end{array}$

 $\begin{array}{l} \exists x_i \vartheta(x_1, \ldots, x_{m+1}), i = m+1 \text{ zu } \pi_1, \ldots, mR_{\vartheta, m+1} \\ \exists x_i \vartheta(x_1, \ldots, x_m), i \leq m \text{ zu } \pi_1, \ldots, i-1, m+1, i+1, \ldots, mR_{\vartheta, m+1} \end{array}$

Theorie: erfüllbare Satzmenge $T\subseteq FO(\tau)$ mit $T\models\psi\Rightarrow\psi\in T$ vollständige Theorie: entweder $\psi\in T$ oder $\neg\psi\in T$

 $Th(\mathcal{A}) := \{ \psi : \mathcal{A} \models \psi \}$

Eine Theorie ist vollständig, wenn alle ihre Modelle elementar äquivalent sind. Isomorphe Strukturen sind elem. äquivalent (vgl. Isomorphielemma)

elementare Äquivalenz $\mathcal{A} \equiv \mathcal{B}$: $Th(\mathcal{A}) = Th(\mathcal{B})$, d.h. für alle $\psi: \mathcal{A} \models \psi \Leftrightarrow \mathcal{B} \models \psi$

Quantorenrang $qr(\psi)$: maximale Schachtelungstiefe der Quan-

m-Äquivalenz: $\mathcal{A} \equiv_m \mathcal{B}$ gdw. für ψ -Sätze mit $qr(\psi) \leq m$: $\mathcal{A} \models$ $\psi \Leftrightarrow \bar{\mathcal{B}} \models \psi$

lokaler Isomorphismus von A nach $B: p: Def(p) \to B$ injektiv

Ehrenfeucht-Fraïsse-Spiel auf \mathcal{A},\mathcal{B} : Herausforderer wählt Punkt aus beliebiger Struktur, Duplikatorin versucht lokalen Isomorphismus zu erzeugen durch die Wahl eines Punktes der jeweils anderen Struktur.

Duplikatorin gewinnt $\mathcal{G}(\mathcal{A}, \mathcal{B})$ bei Isomorphie. Gewinnstrategie: egal was der Gegner wählt, es gibt immer eine Zugfolge, die zum Gewinn führt. Variante: Bei $\mathcal{G}_m(\mathcal{A}, \mathcal{B})$ gibt Herausforderer Zugzahl

Satz E-F: Sei τ endlich, relational, $\mathcal{A}, \mathcal{B}\tau$ -Strukturen. (1) $\mathcal{A} \equiv \mathcal{B}$ gdw. Die Duplikatorin gewinnt das E-F-Spiel $\mathcal{G}(\mathcal{A}, \mathcal{B})$ (2) $\mathcal{A} \equiv_m \mathcal{B}$ gdw. Die Duplikatorin gewinnt $\mathcal{G}_m(\mathcal{A}\mathcal{B})$

Seien $\mathcal{A},\mathcal{B}\tau$ -Strukturen, $\bar{a}=a_1,\ldots,a_r\in A,\bar{b}=b_1,\ldots b_r\in B$. Wenn es eine Formel $\psi(\bar{x})$ mit $qr(\psi)=m$ gibt, so aß $\mathcal{A}\models\psi(\bar{a})$ und $\mathcal{B}\models\neg\psi(\bar{b})$, dann hat der Herausforderer eine Gewinnstrategie für $\mathcal{G}_m(\mathcal{A},\bar{a},\mathcal{B},\bar{b})$.

Anwendung: z.z. \mathcal{K} nicht elementar definierbar: wenn $\mathcal{A} \in \mathcal{K}$ und $\mathcal{B} \not\in \mathcal{K}_+$ aber Duplikatorin gewinnt $G_m(\mathcal{A}_{m+}\mathcal{B}_m)_+$ dann ist \mathcal{K} nicht FO-axiomatisierbar

Kapitel 5: Vollständigkeit und Kompaktheit Sequenz, Korrektheit analog zu AL

Inkonsistenz: jeder Satz kann abgeleitet werden

Regeln des FO-Sequenzenkalküls

$$(S\Rightarrow)\frac{\Gamma,\psi(t)\Rightarrow\Delta}{\Gamma,t\doteq t',\psi(t')\Rightarrow\Delta} \qquad \qquad (\Rightarrow S)\frac{\Gamma\Rightarrow\Delta,\psi(t)}{\Gamma,t\doteq t'\Rightarrow\Delta,\psi(t')}$$

$$(\neg \Rightarrow) \frac{\Gamma \Rightarrow \Delta, \psi}{\Gamma, \neg \psi \Rightarrow \Delta} \qquad (\Rightarrow \neg) \frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \psi}$$

$$(\mathsf{V}\Rightarrow)\frac{\Gamma_{\cdot}\,\psi\Rightarrow\Delta}{\Gamma_{\cdot}\,\psi\,\,\mathsf{V}\,\vartheta\Rightarrow\Delta}\qquad(\Rightarrow\mathsf{V})\frac{\Gamma\Rightarrow\Delta_{\cdot}\,\psi_{\cdot}\,\vartheta}{\Gamma\Rightarrow\Delta\,\psi\,\,\mathsf{V}\,\vartheta}$$

$$(\land\Rightarrow)\frac{\Gamma,\psi,\vartheta\Rightarrow\Delta}{\Gamma,\psi\land\vartheta\Rightarrow\Delta} \qquad \qquad (\Rightarrow\land)\frac{\Gamma\Rightarrow\Delta,\psi\quad\Gamma\Rightarrow\Delta,\psi}{\Gamma\Rightarrow\Delta,\psi\land\vartheta}$$

$$(\rightarrow \Rightarrow) \frac{\Gamma \Rightarrow \Delta_+ \psi}{\Gamma_+ \psi \Rightarrow \vartheta} \frac{\Gamma_+ \vartheta \Rightarrow \Delta}{\Delta} \qquad (\Rightarrow \rightarrow) \frac{\Gamma_- \psi \Rightarrow \Delta_+ \vartheta}{\Gamma \Rightarrow \Delta \psi \rightarrow \vartheta}$$

$$\begin{array}{l} (\exists\Rightarrow)\frac{\Gamma,\psi(c)\Rightarrow\Delta}{\Gamma,\exists x\psi(x)\Rightarrow\Delta} \\ \text{wenn c nicht in Γ,Δ und $\psi(x)$} \end{array} \qquad (\Rightarrow\exists)\frac{\Gamma\Rightarrow\Delta,\psi(t)}{\Gamma\Rightarrow\Delta,\exists x\psi(x)}$$

$$(\forall\Rightarrow)\frac{\Gamma,\psi(t)\Rightarrow\Delta}{\Gamma,\forall x\psi(x)\Rightarrow\Delta} \\ (\Rightarrow\forall)\frac{\Gamma\Rightarrow\Delta,\psi(c)}{\Gamma\Rightarrow\Delta,\forall x\psi(x)} \\ \text{wenn } c \text{ nicht in } \Gamma,\Delta \text{ und } \psi(x)$$

Korrektheitssatz für SK: siehe AL

Ableitbarkeit: Ein Satz ψ ist ableitbar aus $\Phi(\Phi \vdash \psi)$ gdw. endliches $\Gamma \subseteq \Phi$ existiert mit $\Gamma \Rightarrow \psi$ in SK ableitbar

Vollständigkeitssatz: (1) $\Phi \models \psi \Leftrightarrow \Phi \vdash \psi$ (2) Φ erfüllbar

gdw. Φ konsistent Ordnet dem syntaktischen den entsprechenden semantischen Begriff zu. Beweisidee zu (1) \Rightarrow klar, \Leftrap mit Kontraposition und unter Voraussetzung eines Modells $\mathcal{A} \models \Phi \cup \{\neg \psi\}$

Herbrandstruktur $\mathcal{H}(\Sigma)$ zur Modellkonstruktion für atomare Formeln

Formula Distribution went (1) $t=t\in \Sigma$ und (2) went $t=t', \psi(t)\in \Sigma$, dann auch $\psi(t')$ Hintikka

Satz(Löwenheim, Skolem): Jede erfüllbare, abzählbare Satzmenge hat ein abzählbares Modell.

Kompaktheitssatz:

(1) $\Phi \models \psi$ gdw. endl. Teilmenge Φ_0 existiert, so daß $\Phi_0 \models \psi$ (2) Φ ist erfüllbar gdw. jede endl. Teilmenge von Φ ist erfüllbar. Beweisidee: zweimaliges Anwenden des Vollständigkeitssatzes, Definition der Ableitbarkeit.

Sei $\Phi\subseteq FO(\tau)$ eine Satzmenge mit beliebig großen endl. Modellen (d.h für jedes $n\in\mathbb{N}$ gibt es ein Modell $\mathcal{A}\models\Phi$ mit endl. \mathcal{A} und $\mid\mathcal{A}\mid>n$). Dann hat Φ auch ein unendliches Modell.

Die Klasse aller endl. τ-Strukturen ist nicht FO-axiomatisierbar (endl. Gruppen, Graphen, Körper).

Aufsteigender Satz (L-S): Φ besitze ein unendliches Modell. Dann gibt es zu jeder Menge M ein Modell $\mathcal{D} \models \Phi$ über dem Universum D welches mindestens so mächtig wie M ist.