Lineare Algebra I für Mathematiker Lösungen

Anonymous

24. April 2016

Aufgabe 1

Beantworten Sie bitte die folgenden Fragen.

• Jeder Vektorraum hat mindestens ein Element.

Solution: Ja

 \bullet $\mathbb Q$ ist ein $\mathbb R\text{-Vektorraum}$ (mit der Multiplikation in $\mathbb R$ als skalarer Multiplikation).

Solution: Nein

 $\bullet\,$ Es gibt einen $\mathbb{Q}\text{-Vektorraum},$ der nur endlich viele Elemente hat.

Solution: Ja

 \bullet Die Losungsmenge eines homogenen linearen Gleichungssystems uber einem Korper K ist ein K-Vektorraum.

Solution: Ja

• Jeder vom Nullvektorraum verschiedene Q-Vektorraum hat unendlich viele Elemente.

Solution: Ja

Aufgabe 2

Welche der folgenden Mengen sind Untervektorräume der jeweils angegebenen \mathbb{R} -Vektorräume?

• $U := \{ f \in \mathbb{R}^{\mathbb{R}} \mid f \text{ ist monoton wachsend} \} \subseteq \mathbb{R}^{\mathbb{R}}$

Solution: Nein

• $U := \{(a_{ij}) \in \mathbb{R}^{3 \times 4} \mid a_{11} + a_{12} = 0\} \subseteq \mathbb{R}^{3 \times 4}$

 $\bullet \ \ \underline{U := \big\{ f \in \mathbb{R}^{\mathbb{R}} \mid f(0) = f(1) \big\} \subseteq \mathbb{R}^{\mathbb{R}}}$

Solution: Ja

• $U := \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(x) < 0 \text{ fur alle } x \in \mathbb{R} \} \subseteq \mathbb{R}^{\mathbb{R}}$

Solution: Nein

• $U := \{(a_{ij}) \in \mathbb{R}^{4 \times 3} \mid a_{11} \cdot a_{22} = 0\} \subseteq \mathbb{R}^{4 \times 3}$

Solution: Nein

Aufgabe 3

Es seien $v_1 = \begin{pmatrix} -1 \\ 1/2 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, v_3 = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \in \mathbb{R}^2$. Weiter sei V ein beliebiger Vektorraum, $M \subseteq V$ und $v \in V$.

• Ist $V = \langle v \rangle$, so ist auch $V = \langle \underline{w} \rangle$ für jedes $w \in V$.

Solution: Nein

• Das Element v_3 liegt in $\langle v_1 \rangle$.

Solution: Ja

• Jedes Element aus \mathbb{R}^2 liegt im Erzeugnis von v_1 und v_3 .

Solution: Nein

• Der Nullvektorraum wird von keiner Menge erzeugt.

Solution: Nein

• Wenn V von M erzeugt wird und $v \in M$ ist, so wird V auch von $M \setminus \{v\}$ erzeugt.

Solution: Nein

Aufgabe 4

Es seien A und B Matrizen über einem Körper K, so dass $A \cdot B$ definiert ist. Welche der folgenden Aussagen sind wahr?

• Es gilt $A^t \cdot B = (B^t \cdot A)^t$, falls die linke Seite definiert ist.

Solution: Ja

• Sind A und B in $GL_n(K)$, dann gilt $(A^t \cdot B^t) \cdot (A^{-1} \cdot B^{-1})^t \cdot B = B$.

Solution: Ja

• Die Spalten von $A \cdot B$ sind Linearkombinationen der Spalten von A.

• Die Zeilen von $A \cdot B$ sind Linearkombinationen der Zeilen von B.

Solution: Ja

• Jede Zeile von $A \cdot B$ liegt im Zeilenraum von B.

Solution: Ja

Aufgabe 7

Entscheiden Sie jeweils, ob die angegebene Abbildung zwischen den K-Vektorräumen V und W linear ist.

 $\bullet \ K:=\mathbb{R},\, V:=\mathbb{R}^{\mathbb{R}},\, W:=\mathbb{R}^{\mathbb{R}},\, \varphi: f\mapsto f-f$

Solution: Ja

• $K := \mathbb{F}_2, V := \mathbb{F}_2, W := \mathbb{F}_2, \varphi : x \mapsto x^3$

Solution: Ja

 $\bullet \ K:=\mathbb{Q},\, V:=\mathbb{Q},\, W:=\mathbb{Q},\, \varphi: x\mapsto 3x$

Solution: Ja

• $K := \mathbb{R}, \ V := \mathbb{R}^{1 \times 2}, \ W := \mathbb{R}, \ \varphi : (x_1, x_2) \mapsto x_1 \cdot x_2$

Solution: Nein

 $\bullet \ \underline{K}:=\mathbb{R},\, V:=K^{2\times 3},\, W:=K^{1\times 3},\, \varphi:M\mapsto (1,2)\cdot M$

Solution: Ja

Aufgabe 8

Sei K ein Körper, V, W zwei K-Vektorräume und $M, M_1, M_2 \subseteq V$.

• Sei $V = \langle M \rangle$ und $\varphi : V \to W$ linear. Wenn für alle $m \in M$ gilt $\varphi(m) \neq 0$, dann ist $\operatorname{Kern}(\varphi) = \{0\}$.

Solution: Nein

• Für die von M_1 und M_2 erzeugten Unterräume gilt: $\langle M_1 \cap M_2 \rangle \subseteq \langle M_1 \rangle \cap \langle M_2 \rangle$.

Solution: Ja

• Ist $V = \langle M \rangle$ und $\varphi : V \to W$ linear, dann gilt $Bild(\varphi) = \langle \varphi(M) \rangle$.

Solution: Ja

• Für die von M_1 und M_2 erzeugten Unterräume gilt: $\langle M_1 \rangle + \langle M_2 \rangle = \langle M_1 \cup M_2 \rangle$.

• Sei $V=\langle M\rangle$ und $\varphi:V\to W$ linear. Wenn jedes $w\in W$ im Erzeugnis $\langle \varphi(M)\rangle$ liegt, dann ist φ surjektiv.

Solution: Ja

Aufgabe 9

Es seien K ein Körper und $\varphi:V\to W$ und $\psi:W\to V$ lineare Abbildungen zwischen den K-Vektorräumen V und W. Welche der folgenden Aussagen sind wahr?

• Kern $(\psi \circ \varphi) = \text{Bild } (\varphi \circ \psi)$

Solution: Nein

• Kern $\varphi \subseteq \text{Kern } (\psi \circ \varphi)$

Solution: Ja

• Bild $(\psi \circ \varphi) \subseteq \text{Bild } \varphi$

Solution: Nein

• Bild $(\psi \circ \varphi) \subseteq \text{Bild } \psi$

Solution: Ja

• Kern $\psi \subseteq \text{Kern } (\psi \circ \varphi)$

Solution: Nein

Aufgabe 10

Es seien $v_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, v_4 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \in \mathbb{R}^2.$

• Sei $\varphi : \mathbb{R}^2 \to \mathbb{R}$ linear mit $\varphi(v_2) = 6$ und $\varphi(v_3) = -3$. Was ist $\varphi(v_4)$?

Solution: 15

• Gibt es eine lineare Abbildung $\varphi: \mathbb{R}^2 \to \mathbb{R}$ mit $\varphi(v_1) = 1$, $\varphi(v_2) = 5$ und $\varphi(v_3) = -6$?

Solution: Ja

• Gibt es eine lineare Abbildung $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ mit $\varphi(v_2) = v_4$ und $\varphi(v_3) = v_4$?

• Sei $\varphi: \mathbb{R}^2 \to \mathbb{R}$ linear mit $\varphi(v_1) = -2$ und $\varphi(v_2) = 5$. Was ist $\varphi(v_2 + v_3 + v_4)$?

Solution: 14

• Gibt es eine lineare Abbildung $\varphi: \mathbb{R}^2 \to \mathbb{R}$ mit $\varphi(v_2) = 1$, $\varphi(v_3) = 3$ und $\varphi(v_1) = 2$?

Solution: Nein

Aufgabe 13

Seien V ein K-Vektorraum, $v, v' \in V$, $U \leq V$ ein Unterraum und $\pi: V \to V/U$ die kanonische Abbildung auf den Faktorraum.

• π ist genau dann surjektiv, wenn U = V ist.

Solution: Nein

• π ist genau dann injektiv, wenn $\pi(V) = V/U$ ist.

Solution: Nein

• Die Elemente $v+U,v'+U\in V/U$ sind genau dann gleich, wenn v und v' in U liegen.

Solution: Nein

• Ist $W \leq V/U$, so gilt $\pi^{-1}(W) \subseteq U$.

Solution: Nein

• Sei $c \in K \setminus \{1\}$. Genau dann ist (v+v')+U=c(v+U)+(v'+U) in V/U, wenn $v \in U$ ist.

Solution: Ja

Aufgabe 14

Seien V und W Vektorräume, $\varphi:V\to W$ eine lineare Abbildung und $U,U'\leq V$.

• φ ist genau dann surjektiv, wenn $W/\mathrm{Bild}(\varphi)$ der Nullraum ist.

Solution: Ja

• Wenn $U \subseteq \text{Kern}(\varphi)$ ist, dann gilt $\varphi(U' + U) \cong U'/(U' \cap U)$.

Solution: Nein

• Es gilt $W/\text{Bild}(\varphi) \cong V/\text{Kern}(\varphi)$.

• Sei $U \subseteq \text{Kern}(\varphi)$ und sei φ surjektiv. Dann gilt $W \cong (V/U)/(\text{Kern}(\varphi)/U)$.

Solution: Ja

• Wenn $V \cong \text{Bild}(\varphi)$ gilt, dann ist φ injektiv.

Solution: Nein

Aufgabe 15

Sei V ein endlich-erzeugter Vektorraum und $X \subseteq Y \subseteq V$. Dann gilt:

• Wenn X eine Basis von $\langle X \rangle$ ist, so gibt es eine Teilmenge $Y' \subseteq Y$ mit $X \subseteq Y'$, die eine Basis von $\langle Y \rangle$ ist.

Solution: Ja

ullet Ist Y linear unabhängig, so ist auch X linear unabhängig.

Solution: Ja

• Wird V von X erzeugt, so wird V auch von Y erzeugt.

Solution: Ja

• Ist X eine Basis von V, so ist auch Y eine Basis von V.

Solution: Nein

• Ist Y linear abhängig, so ist auch X linear abhängig.

Solution: Nein

Aufgabe 16

Sind die folgenden Teilmengen der angegebenen \mathbb{R} -Vektorraume linear unabhangig?

• $\{(0,0,0),(1,1,1)\} \subseteq \mathbb{R}^{1\times 3}$

Solution: Nein

• $\{x \mapsto \sin(3x), x \mapsto \sin(5x), x \mapsto \sin(7x)\} \subseteq C^{\infty}(\mathbb{R})$

Solution: Ja

• $\overline{\{(2,2,2),(1,1,0),(0,0,3)\}} \subseteq \mathbb{R}^{1\times 3}$

Solution: Nein

• $\{g\} \cup \{f_i \mid i \in \mathbb{N}\} \subseteq \mathbb{R}^{\mathbb{N}}$, wobei g(n) = 1 fur alle $n \in \mathbb{N}$, $f_i(i) = 1$ fur $i \in \mathbb{N}$ und $f_i(n) = 0$ fur $i, n \in \mathbb{N}$, $i \neq n$.

• $\{1,\sqrt{2}\}\subseteq\mathbb{R}$

Solution: Nein

Aufgabe 20

Sei V ein endlich erzeugter Vektorraum und seien $M \subseteq N \subseteq V$. Welche der folgenden Aussagen sind wahr?

ullet Wenn N eine Basis von V ist, dann ist M ein Erzeugendensystem.

Solution: Nein

ullet Wenn N eine Basis von V ist und M ist linear unabhängig, dann ist auch M eine Basis von V.

Solution: Nein

 \bullet Jedes Erzeugendensystem von V ist in einer Basis enthalten.

Solution: Nein

 \bullet Wenn M ein Erzeugendensystem von V ist, dann gibt es eine Basis, die Menthält.

Solution: Nein

 \bullet Eine Basis von V ist eine minimale linear unabhängige Teilmenge.

Solution: Nein

Aufgabe 21

Es sei K ein Korper. Beantworten Sie die folgenden Fragen:

• Gibt es eine injektive, lineare Abbildung $\varphi: K^{2\times 3} \to K^{2\times 2}$?

Solution: Nein

• Es sei $V = \{(x_1, \dots, x_n) \in K^{1 \times n} \mid \sum_{i=1}^n x_i = 0\} \subseteq K^{1 \times n}$. Gibt es eine surjektive, lineare Abbildung $\varphi : V \to K^{n-1}$?

Solution: Ja

• Gibt es eine lineare Abbildung $\varphi : \mathbb{R}^{1\times 3} \to \mathbb{R}^{1\times 2}$ mit $\varphi(1,-1,0) = (1,2)$ und $\varphi(0,1,-1) = (0,1)$ und $\varphi(1,0,-1) = (1,1)$?

Solution: Nein

• Es sei $\varphi: K^3 \to K^2$ ein Epimorphismus. Gibt es eine lineare Abbildung $\psi: K^2 \to K^3$, so dass $\psi \circ \varphi$ ein Isomorphismus ist?

• Gibt es eine Abbildung $\varphi : \mathbb{F}_3 \to \mathbb{F}_3$, die nicht \mathbb{F}_3 -linear ist?

Solution: Ja

Aufgabe 22

Es seien K ein Korper, V und W endlich-erzeugte Vektorraume uber K und $\varphi:V\to W$ eine K-lineare Abbildung. In dieser Aufgabe steht das Wort 'Basis' immer fur 'geordnete Basis'. Welche der folgenden Aussagen sind richtig?

• Wenn φ injektiv ist, dann ist dim $V \leq \dim W$.

Solution: Ja

• Ist (b_1, b_2, b_3) eine Basis von V und φ surjektiv, dann ist $(\varphi(b_1), \varphi(b_2), \varphi(b_3))$ eine Basis von W.

Solution: Nein

• Sind b_1 und b_2 in V und ist $(\varphi(b_1), \varphi(b_2))$ linear unabhangig, dann ist (b_1, b_2) linear unabhangig.

Solution: Ja

• Wenn es eine Basis (b_1, \ldots, b_n) von V gibt, so dass $(\varphi(b_1), \ldots, \varphi(b_n))$ eine Basis von W ist, dann ist φ ein Isomorphismus.

Solution: Ja

• Sind b_1 und b_2 in V und ist (b_1, b_2) linear unabhangig und φ surjektiv, dann ist $(\varphi(b_1), \varphi(b_2))$ linear unabhangig.

Solution: Nein

Aufgabe 23

Gegeben sei die Basis $\mathcal{B} = (v_1, v_2, v_3)$ von $\mathbb{R}^{1\times3}$ mit $v_1 = (1, -1, 0)$, $v_2 = (0, -3, 1)$ und $v_3 = (1, 1, -1)$. Weiter seien die folgenden funf Vektoren aus $\mathbb{R}^{1\times3}$ gegeben. $w_1 = (1, 0, 0)$, $w_2 = (0, 1, 0)$, $w_3 = (0, 0, 1)$, $w_4 = (2, 1, -1)$ und $w_5 = (-1, 1, 1)$. Mit $\kappa_{\mathcal{B}}(w_i)$ sei der Koordinatenvektor von w_i bezuglich der Basis \mathcal{B} bezeichnet, $i = 1, \ldots, 5$.

• Der dritte Eintrag von $\kappa_{\mathcal{B}}(w_4)$ lautet

Solution: 0

• Der zweite Eintrag von $\kappa_{\mathcal{B}}(w_1)$ lautet

Solution: -1

• Der zweite Eintrag von $\kappa_{\mathcal{B}}(w_2)$ lautet

Solution: -1

• Der dritte Eintrag von $\kappa_{\mathcal{B}}(w_5)$ lautet

Solution: -3

• Der zweite Eintrag von $\kappa_{\mathcal{B}}(w_3)$ lautet

Solution: -2

Aufgabe 26

Es sei K ein Körper, $A \in K^{m \times n}$ mit $m, n \in \mathbb{N}$ und $b \in K^m$. Sind die folgenden Aussagen über das lineare Gleichungssystem Ax = b richtig?

 \bullet Falls m=n ist und A nicht invertierbar ist, dann ist Ax=c für alle $c\in K^m$ unlösbar.

Solution: Nein

• Für $0 \neq c \in K^m$ gibt es eine Bijektion zwischen der Lösungsmenge von Ax = b und der von Ax = c.

Solution: Nein

• Falls m=n ist und es ein $c \in K^m$ gibt, so dass Ax=c eine eindeutige Lösung hat, dann hat Ax=b auch eine eindeutige Lösung.

Solution: Ja

• Ax = b ist genau dann unlösbar, wenn $\operatorname{rang}(A) = \operatorname{rang}(A, b) - 1$ ist.

Solution: Ja

• Für c = 0 und n > m hat Ax = c mindestens n - m Lösungen.

Solution: Ja

Aufgabe 27

Es seien die folgenden Matrizen über einem Körper K gegeben:

$$A := \begin{pmatrix} 0 & 0 & -1 & 0 \\ 3 & 0 & 1 & -8 \\ 0 & 1 & 0 & -8 \\ -1 & 0 & 0 & 2 \end{pmatrix}, \quad B := \begin{pmatrix} 1 & 2 & 3 & 1 \\ -1 & 2 & -1 & 2 \\ 3 & -2 & 5 & -3 \end{pmatrix}, \quad C := \begin{pmatrix} 4 & 1 & 0 & -39 \\ 2 & -5 & 1 & -8 \\ -3 & 5 & -5 & -32 \end{pmatrix}$$

(Falls $K = \mathbb{F}_2$ oder $K = \mathbb{F}_3$ ist, betrachten Sie die Matrizen modulo 2 bzw. 3.)

•	Es sei $K = \mathbb{F}_3$. Bestimmen Sie den Rang von B .	
	Solution: 2	
•	Es sei $K=\mathbb{Q}$. Bestimmen Sie die Dimension des Lösungsraums des homogenen Systems mit Koeffizientenmatrix $BA+C$.	
	Solution: 1	
•	Es sei $K = \mathbb{Q}$. Bestimmen Sie den Rang von B .	
	Solution: 2	
•	Es sei $K = \mathbb{F}_2$. Bestimmen Sie den Rang von $AC^t + B^t$.	
	Solution: 2	
•	Es sei $K = \mathbb{F}_3$. Wieviele Lösungen besitzt ein lineares Gleichungssytem mit Koeffizientenmatrix BC^t , wenn es lösbar ist?	
	Solution: 3	
 Aufgabe 28 Alle vorkommenden Matrizen haben Einträge in einem Körper K. Beachten Sie, dass eine invertierbare Matrix stets quadratisch ist. Stimmen die folgenden Aussagen? Ist das Produkt zweier quadratischer Matrizen eine Einheitsmatrix, so ist mindestens einer der Faktoren invertierbar. 		
	Solution: Ja	
•	Hat ein homogenes lineares Gleichungssystem genau eine Lösung, so ist die Koeffizientenmatrix invertierbar.	
	Solution: Nein	
•	Eine quadratische Matrix ist genau dann invertierbar, wenn sie vollen Rang hat.	
	Solution: Ja	
•	Ist A eine quadratische Matrix und A^n invertierbar für ein $n \in \mathbb{N}$, so ist auch A invertierbar.	
	Solution: Ja	
•	Sind A und B Matrizen und sind AB und BA invertierbar, dann ist auch A invertierbar.	
	Solution: Ja	

Alle vorkommenden Matrizen haben Einträge in einem Körper K. Eine Matrix $A \in K^{m \times n}$ hat vollen Rang, wenn $\operatorname{rang}(A) = \operatorname{Min}\{m,n\}$ ist. Sind die folgenden Aussagen wahr?

• Eine Matrix ohne Nullzeilen hat vollen Rang.

Solution: Nein

• Hat $A \in K^{m \times n}$ den Rang n, dann existiert ein $B \in GL_n(K)$ mit $AB = E_n$.

Solution: Nein

• Hat das Produkt zweier Matrizen nicht vollen Rang, so haben auch beide Faktoren nicht vollen Rang.

Solution: Nein

• Für $0 \neq c \in K$ und eine Matrix A haben A und $c \cdot A$ den gleichen Rang.

Solution: Ja

• Eine $n \times n$ -Matrix mit vollem Rang läßt sich durch elementare Zeilen- und Spaltenumformungen in die Einheitsmatrix überführen.

Solution: Ja

Aufgabe 33

Es sei $V:=\mathbb{Q}^{2\times 3}$ der \mathbb{Q} -Vektorraum der 2×3 -Matrizen, $W:=\mathbb{Q}^{2\times 2}$ der \mathbb{Q} -Vektorraum der 2×2 -Matrizen und $\varphi:V\to W$ die folgende \mathbb{Q} -lineare Abbildung:

$$\varphi: V \longrightarrow W \quad , \quad M \longmapsto M \cdot A \quad , \quad \text{wobei } A = \begin{pmatrix} 1 & -3 \\ 2 & -2 \\ 3 & -1 \end{pmatrix} \in \mathbb{Q}^{3 \times 2}.$$

$$\mathcal{B} := (\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix})$$

von V und

$$\mathcal{C}:=(\left(\begin{array}{cc}1&0\\0&0\end{array}\right),\left(\begin{array}{cc}0&0\\0&1\end{array}\right),\left(\begin{array}{cc}0&\frac{1}{2}\\\frac{1}{2}&0\end{array}\right),\left(\begin{array}{cc}0&\frac{1}{2}\\-\frac{1}{2}&0\end{array}\right))$$

von W gewählt. Berechnen Sie die Abbildungsmatrix $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$ von φ bezüglich dieser beiden Basen und geben Sie die verlangten Einträge an.

•	Der Eintrag in der 4. Zeile und der 5. Spalte von $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$ lautet		
	Solution: -2		
•	Der Eintrag in der 4. Zeile und der 2. Spalte von $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$ lautet		
	Solution: -2		
•	Der Eintrag in der 2. Zeile und der 2. Spalte von $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$ lautet		
	Solution: 0		
•	Der Eintrag in der 2. Zeile und der 5. Spalte von $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$ lautet		
	Solution: -2		
•	Der Eintrag in der 4. Zeile und der 6. Spalte von $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$ lautet		
	Solution: -3		
Aufgabe 34 Es seien V und W zwei endlich-dimensionale Vektorräume über einem Körper K und $\varphi:V\to W$ eine lineare Abbildung. Weiter sei $\mathcal{B}:=(v_1,\ldots,v_n)$ eine Basis von V und $\mathcal{C}:=(w_1,\ldots,w_m)$ eine Basis von W und $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$ die Matrix von φ bezüglich der Basen \mathcal{B} und \mathcal{C} . • Ist $\mathcal{C}'=(w_2,w_1,w_3,\ldots,w_m)$, dann erhält man $M_{\mathcal{C}'}^{\mathcal{B}}(\varphi)$ aus $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$,			
	indem man die ersten beiden Zeilen vertauscht. Solution: Ja		
• Ist $C' = (w_1 + w_2, w_2, w_3, \dots, w_m)$, dann erhält man $M_{C'}^{\mathcal{B}}(\varphi)$ aus $M_{C}^{\mathcal{B}}(\varphi)$, indem man die zweite Zeile zur ersten addiert.			
	Solution: Nein		
	Ist $\mathcal{B}' = (v_2, v_1, v_3, \dots, v_n)$, dann erhält man $M_{\mathcal{C}}^{\mathcal{B}'}(\varphi)$ aus $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$, indem man die ersten beiden Spalten vertauscht.		
	Solution: Ja		
	Ist $\mathcal{B}' = (v_1, v_2 - v_1, v_3, \dots, v_n)$, dann erhält man $M_{\mathcal{C}}^{\mathcal{B}'}(\varphi)$ aus $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$, indem man die erste Spalte von der zweiten subtrahiert.		
	Solution: Ja		
	Ist $\mathcal{B}' = (v_n, v_{n-1}, \dots, v_1)$, dann erhält man $M_{\mathcal{C}}^{\mathcal{B}'}(\varphi)$ aus $M_{\mathcal{C}}^{\mathcal{B}}(\varphi)$, indem man dieselben Zeilen in umgekehrter Reihenfolge schreibt.		
	Solution: Nein		

Seien V und W Vektorräume über einem Körper K und $\varphi \in \operatorname{Hom}_K(V, W)$. Seien $\mathcal{B}, \mathcal{B}'$ geordnete Basen von V und $\mathcal{C}, \mathcal{C}'$ geordnete Basen von W. Sind die folgenden Aussagen richtig?

 \bullet Jede Basiswechselmatrix von W ist quadratisch und invertierbar.

Solution: Ja

• Jede Matrix $T \in K^{n \times n}$ ist Basiswechselmatrix von V.

Solution: Nein

• Es gilt $M_{\mathcal{C}}^{\mathcal{B}'}(\varphi) = M_{\mathcal{C}}^{\mathcal{C}'}(\mathrm{id}_W) M_{\mathcal{C}'}^{\mathcal{B}}(\varphi) M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{id}_V).$

Solution: Ja

• Es gibt eine Abbildung $\psi \in \operatorname{Hom}_K(V, W)$, so dass $M_{\mathcal{C}}^{\mathcal{B}}(\psi) = M_{\mathcal{C}'}^{\mathcal{B}'}(\psi)$ ist.

Solution: Ja

• Falls alle Einträge der Basiswechselmatrix von V zu den Basen \mathcal{B} und \mathcal{B}' entweder 0 oder 1 sind, so bestehen \mathcal{B} und \mathcal{B}' aus der gleichen Menge von Vektoren.

Solution: Nein

Aufgabe 39

Seien

$$C := \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad M := \begin{pmatrix} 1 & 3 & 6 & 10 \\ 5 & 11 & 18 & 26 \\ 9 & 19 & 30 & 42 \\ 13 & 27 & 42 & 58 \end{pmatrix} \in \mathbb{R}^{4 \times 4}.$$

Sei $C = (v_1, v_2, v_3, v_4)$ die geordnete Basis von \mathbb{R}^4 , die aus den Spalten von C besteht, und sei \mathcal{B} die Standardbasis von \mathbb{R}^4 . Der Endomorphismus $\psi : \mathbb{R}^4 \to \mathbb{R}^4$ bilde v_i auf die i-te Spalte von M ab, $1 \le i \le 4$. Geben Sie die folgenden Einträge der zugehörigen Abbildungsmatrizen an:

• Eintrag (4,3) von $M_{\mathcal{C}}^{\mathcal{B}}(\psi)$.

Solution: 15

• Eintrag (3,2) von $M_{\mathcal{C}}^{\mathcal{C}}(\psi)$.

Solution: -8

• Eintrag (3,4) von $M_{\mathcal{B}}^{\mathcal{B}}(\psi)$.

Solution: 12

• Eintrag (4,3) von $M_{\mathcal{B}}^{\mathcal{C}}(\psi)$.

Solution: 42

• Eintrag (3,2) von $M_{\mathcal{B}}^{\mathcal{B}}(\psi)$.

Solution: 10

Aufgabe 40

Berechnen Sie das Signum der folgenden Permutationen aus der symmetrischen Gruppe S_{12} .

Solution: -1

Solution: +1

Solution: -1

Solution: +1

Solution: +1

Aufgabe 41

Es sei σ die folgende Permutation von 9 Punkten: $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 5 & 9 & 4 & 1 & 2 & 6 & 7 & 8 \end{pmatrix}$

In den folgenden Fragen ist jeweils ein Produkt von Transpositionen angegeben, wobei an einer Stelle die Variable i anstelle einer der Ziffern von 1 bis 9 steht. Tragen Sie in das Antwortfeld die Ziffer ein, die man für i einsetzen muss, damit das Produkt gleich σ ist.

• (1 2) (1 3) (2 5) (*i* 8) (8 7) (7 6) (3 6)

Solution: 9

• (9 8) (2 5) (3 8) (1 8) (8 7) (5 7) (6 i)

Solution: 7

• (1 2) (*i* 7) (2 5) (1 6) (1 7) (3 9) (8 9)

Solution: 3

• (*i* 5) (1 5) (9 8) (3 8) (6 2) (8 7) (2 4) (7 4) (1 4)

Solution: 4

• (5 7) (2 7) (6 7) (*i* 8) (8 5) (1 3) (3 9)

Solution: 1

Aufgabe 42

Berechnen Sie die Determinanten der folgenden Matrizen mit Einträgen aus $\mathbb{F}_{11} = \{0, 1, \dots, 10\}$. (Die Elemente von \mathbb{F}_{11} werden also durch ihre kleinsten nicht-negativen Restklassenvertreter beschrieben.)

$$\bullet \left(\begin{array}{rrr} 3 & 2 & 5 \\ 10 & 1 & 9 \\ 2 & 3 & 3 \end{array}\right)$$

Solution: 0

 $\bullet \left(\begin{array}{cc} 3 & 7 \\ 2 & 7 \end{array}\right)$

Solution: 7

•
$$\left(\begin{array}{cc} x & x+1\\ x+2 & x+3 \end{array}\right)$$
 für ein $x \in \mathbb{F}_{11}$

Solution: 9

$$\bullet \left(\begin{array}{ccc}
5 & 2 & 8 \\
8 & 2 & 4 \\
6 & 0 & 6
\end{array}\right)$$

Solution: 4

$$\bullet \left(\begin{array}{ccc} 1 & 9 & 2 \\ 0 & 2 & 7 \\ 0 & 0 & 3 \end{array}\right)$$

Solution: 6

Es sei K ein Körper und $M, N \in K^{n \times n}$ für ein $n \in \mathbb{N}$. Die Einträge der Matrix M seien mit $m_{i,j}$ für $(1 \le i, j \le n)$ bezeichnet. Sind die folgenden Aussagen über Determinanten richtig?

• Enthält M nur die Zahlen 0 und 1, dann ist die Determinante von M in der Menge $\{0, 1, -1\}$.

Solution: Nein

• Ist $m_{i,j} = 0$ für $i + j \le n$, dann ist det $M = \prod_{i=1}^n m_{i,n+1-i}$.

Solution: Nein

 $\bullet\,$ Ist ein Diagonaleintrag von M gleich 0, dann ist die Determinante von M auch gleich 0.

Solution: Nein

• Es gilt $(\det M) + (\det N) = \det(M + N)$.

Solution: Nein

• Sind zwei Zeilen von N gleich, so ist det N=0.

Solution: Ja

Aufgabe 46

Sei $A = (a_{i,j}) \in K^{n \times n}$ eine Matrix über dem Körper K.

• Wenn in jeder Zeile und Spalte von A genau ein Eintrag ungleich 0 ist, dann gilt det(A) = 0.

Solution: Nein

• Sei $c \in K$ und $1 \le i \le n$. Entsteht $A' \in K^{n \times n}$ aus A, indem zu jeder Zeile von A das c-fache der i-ten Zeile von A addiert wird, so gilt: $\det(A') = (1+c) \det(A)$.

Solution: Ja

• Entsteht $A' \in K^{n \times n}$ aus A, indem die erste Zeile von A gestrichen und unten angehängt wird, so ist $\det(A') = (-1)^{n+1} \det(A)$.

Solution: Ja

• Sei $K = \mathbb{R}$ und seien alle Einträge a_{ij} von A größer als 0, dann gilt $\det(A) \geq 0$.

• Sei $K = \mathbb{R}$ und $m \in \mathbb{R}$ mit $|a_{ij}| \leq m$ für alle $1 \leq i, j \leq n$. Dann gilt $|\det(A)| \leq m^n$.

Solution: Nein

Aufgabe 47

Es sei R ein kommutativer Ring, n eine natürliche Zahl und E_n die $(n \times n)$ -Einheitsmatrix über R. Für $A \in R^{n \times n}$ sei \tilde{A} die zu A komplementäre Matrix. Sind die folgenden Aussagen richtig?

• Es sei $A \in \mathbb{Z}^{n \times n}$ mit det A = -6. Dann existiert $B \in \mathbb{Q}^{n \times n}$ mit $AB = E_n$ und $6B \in \mathbb{Z}^{n \times n}$.

Solution: Ja

• Ist $A \in \mathbb{R}^{n \times n}$ invertierbar, dann ist det $\tilde{A} = \det A$.

Solution: Nein

• Eine Matrix $A \in \mathbb{Z}^{n \times n}$ ist genau dann invertierbar, wenn det A = 1 ist.

Solution: Nein

• Es sei $A \in \mathbb{Z}^{n \times n}$ mit det $A \neq 0$. Dann existiert $B \in \mathbb{Q}^{n \times n}$ mit $AB = E_n$.

Solution: Ja

• Eine Matrix $A \in \mathbb{Q}^{n \times n}$ ist genau dann invertierbar, wenn $\tilde{A}A \neq 0$ ist.

Solution: Ja

Aufgabe 51

Berechnen Sie jeweils für das angegebene Polynom $f \in \mathbb{Q}[X]$ und die Matrix $M \in \mathbb{Q}^{2 \times 2}$ die Matrix f(M) und geben Sie den geforderten Eintrag an.

• Was ist für $f = X^{10} - X$ und $M = \begin{pmatrix} 2 & 17 \\ 0 & -1 \end{pmatrix}$ der (2, 2)-Eintrag von f(M)?

Solution: 2

• Was ist für $f = X^3 + 2X^2 + 3X + 4$, $M = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$ der (2, 2)-Eintrag von f(M)?

Solution: 40

• Was ist für $f=X^2-3X+2$ und $M=\begin{pmatrix}3&7\\2&7\end{pmatrix}$ der (1,2)-Eintrag von f(M)?

Solution: 49

• Was ist für $f = X \cdot (X-2)^2$ und $M = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$ der (1,2)-Eintrag von f(M)?

Solution: 34

• Was ist für $f = X^3 - 2X^2 - 14X + 3$, $M = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix}$ der (1,2)-Eintrag von f(M)?

Solution: 0

Aufgabe 52

Es sei K ein Korper, und K[X] der Ring der Polynome uber K in der Unbestimmten X. Sind die folgenden Aussagen richtig?

• Die Einheiten von K[X] sind genau die von 0 verschiedenen Polynome vom Grad 0.

Solution: Ja

• Ein Polynom aus K[X] vom Grad 0 ist irreduzibel.

Solution: Nein

• Es ist $\deg(fg) = \deg(f) + \deg(g)$ fur alle $0 \neq f, g \in K[X]$.

Solution: Ja

• Es seien $f, g \in K[X]$ mit f irreduzibel und $f \nmid g$. Dann sind f und g teilerfremd.

Solution: Ja

• Es seien $f, g \in K[X]$. Dann sind f und g genau dann teilerfremd, wenn $u, v \in K[X]$ existieren mit uf + vg = 0.

Solution: Nein

Aufgabe 53

Sei $V \neq \{0\}$ ein endlicher-dimensionaler K-Vektorraum, $\varphi: V \to V$ eine lineare Abbildung und $\dim_K(V) = n$. Sind die folgenden Aussagen wahr?

• Ist 0 einz	ziger Eigenwert, so ist φ die Nullabbildung.	
	Solution: Nein	
	\mathbb{R} . Es gibt ein Element $a \in \mathbb{R}$, das nicht Eigenwert einer Abbildung von V nach V ist.	
	Solution: Nein	
• Falls $n =$	= 5 ist, so hat φ einen Eigenwert.	
	Solution: Nein	
• Falls jede <u>n Elemen</u>	es Element von K Eigenwert von φ ist, so hat K höchstens ate.	
	Solution: Ja	
• φ hat n	verschiedene Eigenwerte.	
	Solution: Nein	
$\varphi: V \to V$ ein Eigenvektoren • Die Diffe	$\{0\}$ ein endlich-dimensionaler Vektorraum über \mathbb{R} und ne lineare Abbildung. Sind die folgenden Aussagen über a richtig? Trenz zweier Eigenvektoren von φ zu verschiedenen Eigenst ein Eigenvektor von φ .	
	Solution: Nein	
• Der Null	vektor ist Eigenvektor von φ .	
	Solution: Nein	
	e Dimension von V mindestens 2 ist und φ einen Eirbesitzt, dann hat φ mindestens 2 linear unabhangige toren.	
	Solution: Nein	
	nme zweier Eigenvektoren von φ zum gleichen Eigenwert, eich Null ist, ist ein Eigenvektor.	
	Solution: Ja	
	einen Vektor $v \neq 0$ in V gibt mit $\varphi(-v) = kv$, dann ist ligenvektor zum Eigenwert k .	
	Solution: Nein	

Sei K ein Körper und V ein K-Vektorraum der Dimension $n \geq 1$. Weiter sei $\varphi \in \operatorname{End}(V)$ und χ_{φ} sein charakteristisches Polynom. Außerdem sei $B \in K^{n \times n}$ und χ_B ihr charakteristisches Polynom. Welche der folgenden Aussagen sind richtig?

• Falls $K = \mathbb{C}$ ist, so hat χ_B mindestens eine Nullstelle.

Solution: Ja

• Wenn φ bijektiv ist, so ist $\chi_{\varphi}(0) \neq 0$.

Solution: Ja

• Falls die Summe der Koeffizienten von χ_{φ} gleich Null ist, so gibt es ein $0 \neq v \in V$ mit $\varphi(v) = 0$.

Solution: Nein

• Wenn für eine Matrix $A \in K^{n \times n}$ gilt $\chi_{\varphi} = \chi_A$, so gibt es eine geordnete Basis \mathcal{B} von V mit $M_{\mathcal{B}}(\varphi) = A$.

Solution: Nein

• Ist $a \in K$ mit $\chi_{\varphi}(a) = 0$, so ist φ nicht invertierbar.

Solution: Nein

Aufgabe 58

Es sei K ein Körper, K[X] der Polynomring in der Unbestimmten X über K und $A \in K^{n \times n}$. Sind die folgenden Aussagen richtig?

• Ist $K = \mathbb{R}$ und n = 2, so ist A trigonalisierbar.

Solution: Nein

• A mit $n \geq 2$ ist genau dann diagonalisierbar, wenn ein n-Tupel (v_1, \ldots, v_n) von Eigenvektoren von A mit $v_i \in K^{n \times 1}$ existiert, das linear unabhängig ist.

Solution: Ja

• Ist $K = \mathbb{R}$, A symmetrisch und n = 2, so ist A diagonalisierbar.

Solution: Ja

• A ist genau dann diagonalisierbar, wenn eine Diagonalmatrix $D \in K^{n \times n}$ und eine Matrix $T \in K^{n \times n}$ existiert mit TD = AT.

• Gilt für A die Gleichung $0 \cdot A = A$, so ist A diagonalisierbar.

Solution: Ja

Aufgabe 59

Es sei K ein Körper. Mit Polynomen sind in dieser Aufgabe immer Polynome in K[X] gemeint. Sind die folgenden Aussagen wahr?

• Jedes Polynom ist charakteristisches Polynom einer Matrix.

Solution: Nein

• Jedes normierte Polynom vom Grad größer oder gleich 1 ist Minimalpolynom einer Matrix.

Solution: Ja

• Das Minimalpolynom der Einheitsmatrix ist X-1.

Solution: Ja

• Das Minimalpolynom einer Matrix ist irreduzibel.

Solution: Nein

• Das Minimalpolynom der Nullmatrix ist das konstante Polynom 1.

Solution: Nein

Aufgabe 60

Gegeben seien die Matrizen

$$A = \begin{pmatrix} 4 & \frac{3}{4} & \frac{3}{4} \\ 0 & 7 & -3 \\ 0 & -3 & 7 \end{pmatrix} \in \mathbb{R}^{3 \times 3} \quad \text{und} \quad B = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 1 & 0 \\ 4 & 2 & 0 \end{pmatrix} \in \mathbb{F}_5^{3 \times 3},$$

wobei $\mathbb{F}_5 = \{0,1,2,3,4\}$ ist. Es seien χ_A und χ_B ihre charakteristischen Polynome, und μ_A und μ_B ihre Minimalpolynome. Einen Teiler $f \in \mathbb{R}[X]$ des charakteristischen Polynoms χ_A von A schreiben wir als $f = \sum_{i=0}^n a_i X^i$ für ein geeignetes $n \in \mathbb{N}$. Analog schreiben wir $g = \sum_{i=0}^n b_i X^i$ für einen Teiler $g \in \mathbb{F}_5[X]$ von χ_B .

• Wie lautet b_2 von μ_B ?

Solution: 1

• Wie lautet b_1 von χ_B ?

Solution: 3

• Wie lautet der Betrag von a_2 von χ_A ?

Solution: 18

• Wie lautet der Betrag von a_0 von μ_A ?

Solution: 160

• Wie lautet der Betrag von a_0 von χ_A ?

Solution: 160

Aufgabe 63

Es sei K ein Körper und $A \in K^{n \times n}$ eine Matrix. Sind die folgenden Aussagen jeweils wahr?

• Ist $K = \mathbb{C}$ und sind A^4 und A^3 linear abhangig, dann ist A diagonalisierbar.

Solution: Nein

 \bullet Falls A und A^2 linear abhängig sind, dann ist A diagonalisierbar.

Solution: Nein

• Ist $K = \mathbb{R}$ und sind die Einträge von A alle gleich, so ist A diagonalisierbar.

Solution: Ja

• Ist $K = \mathbb{C}$ und $A^4 = E_n$, dann ist A diagonalisierbar.

Solution: Ja

• Ist $A^2 = A$, dann ist A diagonalisierbar.

Solution: Ja

• Ist das Minimalpolynom von A gleich dem charakteristischen Polynom von A, dann ist A nicht diagonalisierbar.

Solution: Nein

• Hat ein normiertes Polynom $f \in K[X]$, dessen Grad mindestens 2 ist, paarweise verschiedene Koeffizienten, dann ist seine Begleitmatrix diagonalisierbar.

Solution: Nein

Aufgabe 64

Sei $\langle \, , \, \rangle$ das Standardskalarprodukt auf $\mathbb{R}^2.$ Geben Sie die Langen der folgenden Vektoren an.

• Sei $v = (56, 0)^t$. Wie lautet ||v||?

Solution: 56

• Sei $v = (3,4)^t$. Wie lautet ||v||?

Solution: 5

• Sei $v = (-\sqrt{24}, 5)^t$. Wie lautet ||v||?

Solution: 7

• Sei $v = (-15, 8)^t$. Wie lautet ||v||?

Solution: 17

• Sei $v = (\sqrt{7}, -3)^t$. Wie lautet ||v||?

Solution: 4

Aufgabe 65

Sind die angegebenen Abbildungen jeweils Skalarprodukte auf V?

 $\bullet \ V = \mathbb{R}^2, \ \beta: V \times V \to \mathbb{R}, \ ((a,b)^t, (c,d)^t) \mapsto ac - bc - ad + 3bd.$

Solution: Ja

• $V = \mathbb{C}^2$, $\beta: V \times V \to \mathbb{C}$, $((a,b)^t, (c,d)^t) \mapsto ac + bd$.

Solution: Nein

• $V = \mathbb{R}^2$, $\beta : V \times V \to \mathbb{R}$, $((a,b)^t, (c,d)^t) \mapsto a^2 + 2bc + d^2$.

Solution: Nein

• $V = \mathbb{C}^2$, $\beta : V \times V \to \mathbb{C}$, $((a,b)^t, (c,d)^t) \mapsto 3a\bar{c} + \bar{i}b\bar{c} + ia\bar{d} + b\bar{d}$.

(Hier ist $i^2 = -1$.)

Solution: Ja

• $V = \mathbb{R}^2$, $\beta : V \times V \to \mathbb{R}$, $((a,b)^t, (c,d)^t) \mapsto 3ac + 2bd + ad$.