

LEHRSTUHL FÜR INFORMATIK 2 👩

RWTH Aachen · D-52056 Aachen · GERMANY 🧲

Winter term 2008/09

Prof. Dr. Ir. J.-P. Katoen

Exam in Model Checking March 30, 2009

Solution

(10 points)

Let P be a linear time property. Prove that P is a liveness property if and only if $closure(P) = (2^{AP})^{\omega}$.

Solution:

P is a liveness property iff $closure(P) = (2^{AP})^{\omega}$.

 \implies Let P be a liveness property. Then $pref(P) = (2^{AP})^{\star}$. Hence

$$closure(P) = \left\{ \sigma' \in \left(2^{AP}\right)^{\omega} \mid pref(\sigma) \subseteq pref(P) \right\}$$
$$= \left\{ \sigma' \in \left(2^{AP}\right)^{\omega} \mid pref(\sigma) \subseteq \left(2^{AP}\right)^{\star} \right\}$$
$$= \left(2^{AP}\right)^{\omega}.$$

 $\leftarrow \text{Let } closure(P) = (2^{AP})^{\omega}. \text{ We show that } pref(P) = (2^{AP})^{\star}: \text{ Therefore assume that there exists} \\ \hat{\sigma} \in (2^{AP})^{\star} \setminus pref(P). \text{ Then } pref(\hat{\sigma}\sigma'') \not\subseteq pref(P) \text{ for all } \sigma'' \in (2^{AP})^{\omega} \text{ and hence } \hat{\sigma}\sigma'' \notin closure(P). \\ \text{In this way, we obtain a contradiction to our assumption. Therefore, } pref(P) \supseteq (2^{AP})^{\star} \text{ and our claim follows.}$

(10 points)

Let P denote the linear time property over the set $AP = \{a, b\}$ of atomic propositions such that P consists of all infinite traces $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ that satisfy

$$\forall i \ge 0. \ (A_i = \emptyset \implies \exists k \ge i. \ (b \in A_k \land \forall j \in \{i, \dots, k-1\} . a \notin A_j)).$$

- (a) Specify an LTL formula φ such that $Words(\varphi) = P$.
- (b) Give an ω -regular expression for P.
- (c) Apply the decomposition theorem and give ω -regular expressions for P_{safe} and P_{live} .

Solution:

- (a) $\Box ((\neg a \land \neg b) \rightarrow (\neg a) \mathsf{U}b)$
- (b) Let $E = (\{a\} + \{b\} + \{a, b\} + \emptyset^+ . (\{b\} + \{a, b\})).$ Then $P = \mathcal{L}_{\omega}(E^{\omega}).$
- (c) We obtain the safety and liveness properties as follows:

$$\begin{split} P_{safe} &= closure(P) \\ &= \mathcal{L}_{\omega} \left(E^{\omega} + E^{\star}.\emptyset^{\omega} \right) \\ &= \mathcal{L}_{\omega} \left(\left(\{a\} + \{b\} + \{a,b\} + \emptyset^{+}.(\{b\} + \{a,b\}) \right)^{\omega} + \left(\{a\} + \{b\} + \{a,b\} + \emptyset^{+}.(\{b\} + \{a,b\}) \right)^{\star}.\emptyset^{\omega} \right) \\ \bar{P}_{safe} &= \left(2^{AP} \right)^{\star}.\emptyset.\{a\}. \left(2^{AP} \right)^{\omega} \\ P_{live} &= P \cup \left(\left(2^{AP} \right)^{\omega} \setminus P_{safe} \right) \\ &= P \cup \bar{P}_{safe} \\ &= \left(\{a\} + \{b\} + \{a,b\} + \emptyset^{+}.(\{b\} + \{a,b\}) \right)^{\omega} + \left(2^{AP} \right)^{\star}.\emptyset.\{a\}. \left(2^{AP} \right)^{\omega}. \end{split}$$

Let $\varphi = (a \land \bigcirc a) \mathsf{U}(\neg(\neg a \mathsf{U} a))$ be a LTL formula over $AP = \{a\}$.

- (a) Compute all elementary sets with respect to $closure(\varphi)$! Hint: There are 7 elementary sets.
- (b) Use the algorithm from the lecture to construct the GNBA \mathcal{G}_{φ} with $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) = Words(\varphi)$:
 - Define the set of initial states and the acceptance component.
 - Depict the transition relation of G_φ.
 Hint: It suffices to consider the reachable elementary sets only!
- (c) Informally describe the language $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi})$.

Solution:

(a) The elementary sets are:

	a	$\bigcirc a$	$\neg a U a$	$a \wedge \bigcirc a$	φ
B_1	0	0	0	0	1
B_2	0	0	1	0	0
B_3	0	1	0	0	1
B_4	0	1	1	0	0
B_5	1	0	1	0	0
B_6	1	1	1	1	0
B_7	1	1	1	1	1

(b) The GNBA $\mathcal{G}_{\varphi} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ is defined by:

$$Q = \{B_1, B_2, B_3, B_4, B_5, B_6, B_7\}$$

$$\Sigma = 2^{\{a\}} = \{\emptyset, \{a\}\}$$

$$Q_0 = \{B_1, B_3, B_7\}$$

$$\mathcal{F} = \{F_{\neg a \cup a}, F_{\varphi}\}$$

$$F_{\neg a \cup a} = \{B_1, B_3, B_5, B_6, B_7\}$$

$$F_{\varphi} = \{B_1, B_2, B_3, B_4, B_5, B_6\}$$

The transition relation δ is given by the following graph representation (where also the unreachable parts are outlined — not necessary in the exam):

(c) The accepted language $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi})$ is the singleton $\{\emptyset^{\omega}\}$.

Let P denote the set of traces $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ over $AP = \{a, b\}$ such that there exist infinitely many indices $k \ge 0$ with $A_k = \emptyset$. Consider the following transition system TS:

For each of the fairness assumptions

- (a) $\mathcal{F}_1 = (\{\{\alpha\}\}, \{\{\beta\}, \{\delta, \gamma\}\}, \emptyset)$ and
- (b) $\mathcal{F}_2 = (\{\{\alpha\}\}, \{\{\beta\}, \{\delta\}, \{\gamma\}\}, \emptyset\}):$

Decide whether $TS \models_{\mathcal{F}_i} P$ for i = 1, 2. Justify your answers!

Solution:

We consider each of the fairness assumptions \mathcal{F}_i for $i \in \{1, 2\}$: We have $TS \models_{\mathcal{F}_i} P$ iff $FairTraces_{\mathcal{F}_i}(TS) \subseteq P$. Because of $\stackrel{\infty}{\exists} k$. $A_k = \emptyset$, each trace has to visit s_3 infinitely many times.

- (a) $TS \not\models_{\mathcal{F}_1} P$: Consider the execution $\pi = (s_0 s_2 s_1 s_1)^{\omega}$. It is \mathcal{F}_1 -fair but $\pi \not\models \Box \diamondsuit (\neg a \land \neg b)$.
- (b) $TS \models_{\mathcal{F}_2} P$:
 - Any trace that reaches s_4 is not \mathcal{F}_2 -fair as α is executed only finitely many times. This is in contradiction to our $\mathcal{F}_{2,ucond} = \{\{\alpha\}\}$.
 - Therefore $s_3 \xrightarrow{\delta} s_4$ is never taken.
 - Because of $\{\gamma\} \in \mathcal{F}_{2,strong}$, the α -loop of s_1 cannot be taken infinitely long.
 - Because of $\{\beta\} \in \mathcal{F}_{2,strong}$, we take the transition $s_0 \xrightarrow{s}_2$ infinitely often.
 - Because of $\{\delta\} \in \mathcal{F}_{2,strong}$, we take the transition $s_2 \xrightarrow{s}_3$ infinitely often.

Therefore $FairTraces_{\mathcal{F}_1}(TS) \subseteq P$ and $TS \models_{\mathcal{F}_1} P$.

(4+6 points)

Solution 5a

Consider the following transition systems TS_1 and TS_2 :

- (a) Compute TS_1/\sim and TS_2/\sim .
- (b) Decide whether $TS_1 \sim TS_2$. Explain your answer.

Solution:

(a) The quotient transition systems for TS_1 and TS_2 are:

(b) $TS_1 \not\sim TS_2$: Note that $s_1 \not\sim t_1$ as s_1 has successors in three equivalence classes whereas t_1 only has successors to $[t_2]$ and to $[t_4]$.

Solution 5b

Let φ be an LTL-formula, $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system and $s \in S$.

- (a) Prove or disprove: $s \models \varphi \iff s \not\models \neg \varphi$.
- (b) Prove that $\Diamond (a \land \Box b) \mathsf{W} \neg b \equiv \Diamond (\neg b \lor \Box (a \land b)).$

Solution:

(a) Let $\varphi = \bigcirc a$ and consider the transition system

Then $s_0 \not\models \neg \bigcirc a$ (because of $\pi = s_0 s_1$) and $s_0 \not\models \bigcirc a$ (because of $\pi = s_0 s_2$). Therefore $s_0 \models \varphi \iff s_0 \not\models \neg \varphi$.

(b) We proceed as follows:

$$\diamond (a \land \Box b) \mathsf{W}(\neg b) \equiv \diamond [(a \land \Box b) \mathsf{U}(\neg b) \lor \Box (a \land \Box b)] \\ \equiv \diamond (a \land \Box b) \mathsf{U}(\neg b) \lor \diamond \Box (a \land \Box b) \\ \equiv \diamond \neg b \lor \diamond (\Box a \land \Box \Box b) \\ \equiv \diamond \neg b \lor \diamond (\Box a \land \Box b) \\ \equiv \diamond \neg b \lor \diamond \Box (a \land b) \\ \equiv \diamond (\neg b \lor \Box (a \land b)).$$