Exam in Model Checking
March 30, 2009

Solution

Solution 1

Let P be a linear time property. Prove that P is a liveness property if and only if $\operatorname{closure}(P)=\left(2^{A P}\right)^{\omega}$.

Solution:

P is a liveness property iff closure $(P)=\left(2^{A P}\right)^{\omega}$.
\Longrightarrow Let P be a liveness property. Then $\operatorname{pref}(P)=\left(2^{A P}\right)^{\star}$. Hence

$$
\begin{aligned}
\operatorname{closure}(P) & =\left\{\sigma^{\prime} \in\left(2^{A P}\right)^{\omega} \mid \operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P)\right\} \\
& =\left\{\sigma^{\prime} \in\left(2^{A P}\right)^{\omega} \mid \operatorname{pref}(\sigma) \subseteq\left(2^{A P}\right)^{\star}\right\} \\
& =\left(2^{A P}\right)^{\omega}
\end{aligned}
$$

\Longleftarrow Let closure $(P)=\left(2^{A P}\right)^{\omega}$. We show that $\operatorname{pref}(P)=\left(2^{A P}\right)^{\star}$: Therefore assume that there exists $\hat{\sigma} \in\left(2^{A P}\right)^{\star} \backslash \operatorname{pref}(P)$. Then $\operatorname{pref}\left(\hat{\sigma} \sigma^{\prime \prime}\right) \nsubseteq \operatorname{pref}(P)$ for all $\sigma^{\prime \prime} \in\left(2^{A P}\right)^{\omega}$ and hence $\hat{\sigma} \sigma^{\prime \prime} \notin$ closure (P). In this way, we obtain a contradiction to our assumption. Therefore, $\operatorname{pref}(P) \supseteq\left(2^{A P}\right)^{\star}$ and our claim follows.

Solution 2

Let P denote the linear time property over the set $A P=\{a, b\}$ of atomic propositions such that P consists of all infinite traces $\sigma=A_{0} A_{1} A_{2} \cdots \in\left(2^{A P}\right)^{\omega}$ that satisfy

$$
\forall i \geq 0 .\left(A_{i}=\emptyset \Longrightarrow \exists k \geq i .\left(b \in A_{k} \wedge \forall j \in\{i, \ldots, k-1\} . a \notin A_{j}\right)\right)
$$

(a) Specify an LTL formula φ such that $\operatorname{Words}(\varphi)=P$.
(b) Give an ω-regular expression for P.
(c) Apply the decomposition theorem and give ω-regular expressions for $P_{\text {safe }}$ and $P_{\text {live }}$.

Solution:
(a) $\square((\neg a \wedge \neg b) \rightarrow(\neg a) \cup b)$
(b) Let $E=\left(\{a\}+\{b\}+\{a, b\}+\emptyset^{+} .(\{b\}+\{a, b\})\right)$.

Then $P=\mathcal{L}_{\omega}\left(E^{\omega}\right)$.
(c) We obtain the safety and liveness properties as follows:

$$
\begin{aligned}
P_{\text {safe }} & =\text { closure }(P) \\
& =\mathcal{L}_{\omega}\left(E^{\omega}+E^{\star} . \emptyset^{\omega}\right) \\
& =\mathcal{L}_{\omega}\left(\left(\{a\}+\{b\}+\{a, b\}+\emptyset^{+} .(\{b\}+\{a, b\})\right)^{\omega}+\left(\{a\}+\{b\}+\{a, b\}+\emptyset^{+} \cdot(\{b\}+\{a, b\})\right)^{\star} . \emptyset^{\omega}\right) \\
\bar{P}_{\text {safe }} & =\left(2^{A P}\right)^{\star} . \emptyset \cdot\{a\} \cdot\left(2^{A P}\right)^{\omega} \\
P_{\text {live }} & =P \cup\left(\left(2^{A P}\right)^{\omega} \backslash P_{\text {safe }}\right) \\
& =P \cup \bar{P}_{\text {safe }} \\
& =\left(\{a\}+\{b\}+\{a, b\}+\emptyset^{+} .(\{b\}+\{a, b\})\right)^{\omega}+\left(2^{A P}\right)^{\star} . \emptyset \cdot\{a\} \cdot\left(2^{A P}\right)^{\omega} .
\end{aligned}
$$

Solution 3

Let $\varphi=(a \wedge \bigcirc a) \mathrm{U}(\neg(\neg a \mathrm{U} a))$ be a LTL formula over $A P=\{a\}$.
(a) Compute all elementary sets with respect to closure (φ) !

Hint: There are 7 elementary sets.
(b) Use the algorithm from the lecture to construct the GNBA \mathcal{G}_{φ} with $\mathcal{L}_{\omega}\left(\mathcal{G}_{\varphi}\right)=\operatorname{Words}(\varphi)$:

- Define the set of initial states and the acceptance component.
- Depict the transition relation of \mathcal{G}_{φ}.

Hint: It suffices to consider the reachable elementary sets only!
(c) Informally describe the language $\mathcal{L}_{\omega}\left(\mathcal{G}_{\varphi}\right)$.

Solution:

(a) The elementary sets are:

	a	$\bigcirc a$	$\neg a \cup a$	$a \wedge \bigcirc a$	φ
B_{1}	0	0	0	0	1
B_{2}	0	0	1	0	0
B_{3}	0	1	0	0	1
B_{4}	0	1	1	0	0
B_{5}	1	0	1	0	0
B_{6}	1	1	1	1	0
B_{7}	1	1	1	1	1

(b) The GNBA $\mathcal{G}_{\varphi}=\left(Q, \Sigma, \delta, Q_{0}, \mathcal{F}\right)$ is defined by:

$$
\begin{aligned}
Q & =\left\{B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}, B_{7}\right\} \\
\Sigma & =2^{\{a\}}=\{\emptyset,\{a\}\} \\
Q_{0} & =\left\{B_{1}, B_{3}, B_{7}\right\} \\
\mathcal{F} & =\left\{F_{\neg a \cup a}, F_{\varphi}\right\} \\
F_{\neg a \cup a} & =\left\{B_{1}, B_{3}, B_{5}, B_{6}, B_{7}\right\} \\
F_{\varphi} & =\left\{B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}\right\}
\end{aligned}
$$

The transition relation δ is given by the following graph representation (where also the unreachable
 parts are outlined - not necessary in the exam):
(c) The accepted language $\mathcal{L}_{\omega}\left(\mathcal{G}_{\varphi}\right)$ is the singleton $\left\{\emptyset^{\omega}\right\}$.

Let P denote the set of traces $\sigma=A_{0} A_{1} A_{2} \cdots \in\left(2^{A P}\right)^{\omega}$ over $A P=\{a, b\}$ such that there exist infinitely many indices $k \geq 0$ with $A_{k}=\emptyset$. Consider the following transition system $T S$:

For each of the fairness assumptions
(a) $\mathcal{F}_{1}=(\{\{\alpha\}\},\{\{\beta\},\{\delta, \gamma\}\}, \emptyset)$ and
(b) $\left.\mathcal{F}_{2}=(\{\{\alpha\}\},\{\{\beta\},\{\delta\},\{\gamma\}\}, \emptyset\}\right)$:

Decide whether $T S \models_{\mathcal{F}_{i}} P$ for $i=1,2$. Justify your answers!

Solution:

We consider each of the fairness assumptions \mathcal{F}_{i} for $i \in\{1,2\}$: We have $T S{\models \mathcal{F}_{i}}$ Piff FairTraces $\mathcal{F}_{i}(T S) \subseteq$ P. Because of $\stackrel{\infty}{\exists} k . A_{k}=\emptyset$, each trace has to visit s_{3} infinitely many times.
(a) $T S \not \vDash_{\mathcal{F}_{1}} P$: Consider the execution $\pi=\left(s_{0} s_{2} s_{1} s_{1}\right)^{\omega}$. It is \mathcal{F}_{1}-fair but $\pi \not \vDash \square \diamond(\neg a \wedge \neg b)$.
(b) $T S \models_{\mathcal{F}_{2}} P$:

- Any trace that reaches s_{4} is not \mathcal{F}_{2}-fair as α is executed only finitely many times. This is in contradiction to our $\mathcal{F}_{2, \text { ucond }}=\{\{\alpha\}\}$.
- Therefore $s_{3} \xrightarrow{\delta} s_{4}$ is never taken.
- Because of $\{\gamma\} \in \mathcal{F}_{2, \text { strong }}$, the α-loop of s_{1} cannot be taken infinitely long.
- Because of $\{\beta\} \in \mathcal{F}_{2, \text { strong }}$, we take the transition $s_{0} \xrightarrow{s}{ }_{2}$ infinitely often.
- Because of $\{\delta\} \in \mathcal{F}_{2, \text { strong }}$, we take the transition $s_{2} \stackrel{s}{\rightarrow}_{3}$ infinitely often.

Therefore FairTraces $\mathcal{F}_{1}(T S) \subseteq P$ and $T S \models_{\mathcal{F}_{1}} P$.

Solution 5a

Consider the following transition systems $T S_{1}$ and $T S_{2}$:

(a) Compute $T S_{1} / \sim$ and $T S_{2} / \sim$.
(b) Decide whether $T S_{1} \sim T S_{2}$. Explain your answer.

Solution:

(a) The quotient transition systems for $T S_{1}$ and $T S_{2}$ are:

$$
\begin{array}{rlrl}
\mathcal{R} & =\mathrm{Id} & \\
{\left[s_{1}\right]} & =\left\{s_{1}\right\} & & {\left[s_{2}\right]=\left\{s_{2}\right\}} \\
{\left[s_{3}\right]} & =\left\{s_{3}\right\} & & {\left[s_{4}\right]=\left\{s_{4}\right\}} \\
{\left[s_{5}\right]} & =\left\{s_{5}\right\} &
\end{array}
$$

$$
\begin{aligned}
\mathcal{R} & =\left\{\left(t_{1}, t_{5}\right),\left(t_{2}, t_{3}\right),\left(t_{2}, t_{6}\right)\right\}^{*} \\
{\left[t_{1}\right] } & =\left\{t_{1}, t_{5}\right\} \\
{\left[t_{2}\right] } & =\left\{t_{2}, t_{3}, t_{6}\right\} \\
{\left[t_{4}\right] } & =\left\{t_{4}\right\}
\end{aligned}
$$

(b) $T S_{1} \nsim T S_{2}$: Note that $s_{1} \nsim t_{1}$ as s_{1} has successors in three equivalence classes whereas t_{1} only has successors to $\left[t_{2}\right]$ and to $\left[t_{4}\right]$.

Solution 5b

Let φ be an LTL-formula, $T S=(S, A c t, \rightarrow, I, A P, L)$ be a transition system and $s \in S$.
(a) Prove or disprove: $s \models \varphi \Longleftrightarrow s \not \vDash \neg \varphi$.
(b) Prove that $\diamond(a \wedge \square b) \mathrm{W} \neg b \equiv \diamond(\neg b \vee \square(a \wedge b))$.

Solution:

(a) Let $\varphi=\bigcirc a$ and consider the transition system

Then $s_{0} \not \models \neg \bigcirc a$ (because of $\pi=s_{0} s_{1}$) and $s_{0} \not \models \bigcirc a$ (because of $\pi=s_{0} s_{2}$).
Therefore $s_{0} \models \varphi \Longleftrightarrow s_{0} \not \models \neg \varphi$.
(b) We proceed as follows:

$$
\begin{aligned}
\diamond(a \wedge \square b) \mathrm{W}(\neg b) & \equiv \diamond[(a \wedge \square b) \mathrm{U}(\neg b) \vee \square(a \wedge \square b)] \\
& \equiv \diamond(a \wedge \square b) \mathrm{U}(\neg b) \vee \diamond \square(a \wedge \square b) \\
& \equiv \diamond \neg b \vee \diamond(\square a \wedge \square \square b) \\
& \equiv \diamond \neg b \vee \diamond(\square a \wedge \square b) \\
& \equiv \diamond \neg b \vee \diamond \square(a \wedge b) \\
& \equiv \diamond(\neg b \vee \square(a \wedge b))
\end{aligned}
$$

