

LEHRSTUHL FÜR INFORMATIK 2

RWTH Aachen · D-52056 Aachen · GERMANY 🦰

Winter term 2008/09

Prof. Dr. Ir. J.-P. Katoen

Exam in Model Checking for Master of Science and diploma students March 30, 2009

Family name:	
.	
First name:	
Student number:	
Field of study:	🗆 Informatik (Diplom)
ricid of study.	□ Software Systems Engineering
	\Box Others:

Please note the following hints:

- Keep your student id card and a passport ready.
- The only allowed materials are
 - a copy of the lecture notes,
 - a copy of the lecture slides and
 - a dictionary.

No other materials (i.a. exercises, solutions, handwritten notes) are admitted.

- This test should have six pages (including this cover sheet).
- Write your name and student number on every sheet.
- Also use the back side of the pages if needed.
- Write with blue or black ink; do not use a pencil.
- Any attempt at deception leads to failure for this exam, even if it is detected only later.
- The editing time is **90 minutes**.

Question	Possible	Received
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	
Grade		

Let P be a linear time property. Prove that P is a liveness property if and only if $closure(P) = (2^{AP})^{\omega}$.

(10 points)

Name: ____

Question 2

Let P denote the linear time property over the set $AP = \{a, b\}$ of atomic propositions such that P consists of all infinite traces $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ that satisfy

$$\forall i \ge 0. \ (A_i = \emptyset \implies \exists k \ge i. \ (b \in A_k \land \forall j \in \{i, \dots, k-1\}. \ a \notin A_j)).$$

- (a) Specify an LTL formula φ such that $Words(\varphi) = P$.
- (b) Give an ω -regular expression for P.
- (c) Apply the decomposition theorem and give ω -regular expressions for P_{safe} and P_{live} .

(10 points)

Let $\varphi = (a \land \bigcirc a) \mathsf{U}(\neg(\neg a \mathsf{U} a))$ be a LTL formula over $AP = \{a\}$.

- (a) Compute all elementary sets with respect to $closure(\varphi)$! Hint: There are 7 elementary sets.
- (b) Use the algorithm from the lecture to construct the GNBA \mathcal{G}_{φ} with $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) = Words(\varphi)$:
 - Define the set of initial states and the acceptance component.
 - Depict the transition relation of G_φ.
 Hint: It suffices to consider the reachable elementary sets only!
- (c) Informally describe the language $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi})$.

(10 points)

4

(10 points)

Let P denote the set of traces $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$ over $AP = \{a, b\}$ such that there exist infinitely many indices $k \ge 0$ with $A_k = \emptyset$. Consider the following transition system TS:

For each of the fairness assumptions

- (a) $\mathcal{F}_1 = (\{\{\alpha\}\}, \{\{\beta\}, \{\delta, \gamma\}\}, \emptyset)$ and
- (b) $\mathcal{F}_2 = \left(\left\{\{\alpha\}\right\}, \left\{\{\beta\}, \{\delta\}, \{\gamma\}\right\}, \emptyset\right\}\right)$:

Decide whether $TS \models_{\mathcal{F}_i} P$ for i = 1, 2. Justify your answers!

Consider the following transition systems TS_1 and TS_2 :

- (a) Compute TS_1/\sim and TS_2/\sim .
- (b) Decide whether $TS_1 \sim TS_2$. Explain your answer.

(10 points)