Exam in Model Checking for Master of Science and diploma students

March 30, 2009

Family name:

First name:

Student number:

Field of study:
\square Informatik (Diplom)
\square Software Systems EngineeringOthers: \qquad
Please note the following hints:

- Keep your student id card and a passport ready.
- The only allowed materials are
- a copy of the lecture notes,
- a copy of the lecture slides and
- a dictionary.

No other materials (i.a. exercises, solutions, handwritten notes) are admitted.

- This test should have six pages (including this cover sheet).
- Write your name and student number on every sheet.
- Also use the back side of the pages if needed.
- Write with blue or black ink; do not use a pencil.
- Any attempt at deception leads to failure for this exam, even if it is detected only later.
- The editing time is $\mathbf{9 0}$ minutes.

Question	Possible	Received	
1	10		
2	10		
3	10		
4	10		
5	10		
Total	50		
Grade			

Question 1

Let P be a linear time property. Prove that P is a liveness property if and only if $\operatorname{closure}(P)=\left(2^{A P}\right)^{\omega}$.

Question 2

Let P denote the linear time property over the set $A P=\{a, b\}$ of atomic propositions such that P consists of all infinite traces $\sigma=A_{0} A_{1} A_{2} \cdots \in\left(2^{A P}\right)^{\omega}$ that satisfy

$$
\forall i \geq 0 .\left(A_{i}=\emptyset \Longrightarrow \exists k \geq i .\left(b \in A_{k} \wedge \forall j \in\{i, \ldots, k-1\} . a \notin A_{j}\right)\right) .
$$

(a) Specify an LTL formula φ such that $\operatorname{Words}(\varphi)=P$.
(b) Give an ω-regular expression for P.
(c) Apply the decomposition theorem and give ω-regular expressions for $P_{\text {safe }}$ and $P_{\text {live }}$.

Question 3

Let $\varphi=(a \wedge \bigcirc a) \mathrm{U}(\neg(\neg a \mathrm{U} a))$ be a LTL formula over $A P=\{a\}$.
(a) Compute all elementary sets with respect to $\operatorname{closure}(\varphi)$!

Hint: There are 7 elementary sets.
(b) Use the algorithm from the lecture to construct the $\operatorname{GNBA} \mathcal{G}_{\varphi}$ with $\mathcal{L}_{\omega}\left(\mathcal{G}_{\varphi}\right)=\operatorname{Words}(\varphi)$:

- Define the set of initial states and the acceptance component.
- Depict the transition relation of \mathcal{G}_{φ}.

Hint: It suffices to consider the reachable elementary sets only!
(c) Informally describe the language $\mathcal{L}_{\omega}\left(\mathcal{G}_{\varphi}\right)$.

Question 4

Let P denote the set of traces $\sigma=A_{0} A_{1} A_{2} \cdots \in\left(2^{A P}\right)^{\omega}$ over $A P=\{a, b\}$ such that there exist infinitely many indices $k \geq 0$ with $A_{k}=\emptyset$. Consider the following transition system $T S$:

For each of the fairness assumptions
(a) $\mathcal{F}_{1}=(\{\{\alpha\}\},\{\{\beta\},\{\delta, \gamma\}\}, \emptyset)$ and
(b) $\left.\mathcal{F}_{2}=(\{\{\alpha\}\},\{\{\beta\},\{\delta\},\{\gamma\}\}, \emptyset\}\right)$:

Decide whether $T S \not \models_{\mathcal{F}_{i}} P$ for $i=1,2$. Justify your answers!

Question 5

Consider the following transition systems $T S_{1}$ and $T S_{2}$:

(a) Compute $T S_{1} / \sim$ and $T S_{2} / \sim$.
(b) Decide whether $T S_{1} \sim T S_{2}$. Explain your answer.

