

LEHRSTUHL FÜR INFORMATIK 2

RWTH Aachen · D-52056 Aachen · GERMANY

Winter term 2008/09

Prof. Dr. Ir. J.-P. Katoen

Exam in *Model Checking* for Master of Science and diploma students February 27, 2009

Family name:	
First name:	
Student number:	
Field of study:	🗆 Informatik (Übungsschein)
	Software Systems Engineering
	\Box Others:

Please note the following hints:

- Keep your student id card and a passport ready.
- The only allowed materials are
 - a copy of the lecture notes,
 - a copy of the lecture slides.
 - a dictionary.

No other materials (i.a. exercises, solutions, handwritten notes) are admitted.

- This test should have six pages (including this cover sheet).
- Write your name and student number on every sheet.
- Also use the back side of the pages if needed.
- Write with blue or black ink; do not use a pencil.
- Any attempt at deception leads to failure for this exam, even if it is detected only later.
- The editing time is **90 minutes**.

Question	Possible	Received
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	
Grade		

Question 1

(10 points)

Let P and P' be safety properties. Prove that $BadPref(P) \cap BadPref(P') = BadPref(P \cup P')$.

Name:

Student no.:

Question 2

(10 points)

Consider the linear-time property P over $AP = \{a, b\}$:

" $(\neg a \land \neg b)$ holds infinitely often and $(a \land b)$ never holds and between any two occurrences of $(\neg a \land \neg b)$, the number of states where b holds is even."

- (a) Provide an NBA \mathcal{A} over 2^{AP} such that $\mathcal{L}_{\omega}(\mathcal{A}) = P$. Hint: Parts (b) and (c) can be solved without a solution for part (a).
- (b) Formally prove or disprove the following statements:
 - P is a safety property.
 - *P* is a liveness property.
- (c) Let \mathcal{A}' be an NBA over 2^{AP} . Then $P' = \mathcal{L}_{\omega}(\mathcal{A}')$ is the linear-time property defined by \mathcal{A}' . Is it always the case that there exists an LTL-formula φ such that $P' = Words(\varphi)$? Justify your answer!

Question 3

(10 points)

Let $\varphi = (a \land \bigcirc a) \mathsf{U}(a \land \neg \bigcirc a)$ be an LTL-formula over $AP = \{a\}$.

- (a) Compute all elementary sets with respect to φ .
- (b) Construct the GNBA \mathcal{G}_{φ} according to the algorithm from the lecture such that $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) = Words(\varphi)$.
- (c) Give an ω -regular expression E such that $\mathcal{L}_{\omega}(\mathcal{G}_{\varphi}) = \mathcal{L}_{\omega}(E)$.

Name:

Question 4

Compute $Sat_{sfair}(\Phi)$ for the CTL-formula Φ and the strong fairness assumption sfair:

$$\Phi = \exists \Box a$$

sfair = $\Box \diamondsuit a \to \Box \diamondsuit \exists (\neg a) \cup (\forall \bigcirc b)$

where TS over $AP = \{a, b\}$ is given by:

Proceed in the following steps:

- (a) Determine $Sat (\exists (\neg a) \cup (\forall \bigcirc b))$ (without fairness).
- (b) Determine $Sat_{sfair}(\exists \Box true)$.
- (c) Determine $Sat_{sfair}(\Phi)$.

(10 points)

Question 5

Consider the two transition systems TS_1 and TS_2 :

- (a) Prove or disprove $TS_1 \sim TS_2$.
- (b) Prove or disprove $TS_1 \simeq TS_2$.

(10 points)