Exam in Model Checking

February 10, 2006

Solution

Solution 1

approach:	2
closure $($ closure $(P)) \subseteq$ closure (P)	4
closure $(P) \subseteq$ closure $($ closure $(P))$	4

Let P denote an LT property. Then $\operatorname{closure}(P)$ is a safety property:

Proof:

We show that $\operatorname{closure}(P)=\operatorname{closure}(\operatorname{closure}(P))$.
" \subseteq ": Let $\sigma \in \operatorname{closure}(P)$. From the definition of closure one infers

$$
\begin{equation*}
\operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P) . \tag{1}
\end{equation*}
$$

By definition, $\operatorname{closure}(P)=\left\{\sigma^{\prime} \in\left(2^{A P}\right)^{\omega} \mid \operatorname{pref}\left(\sigma^{\prime}\right) \subseteq \operatorname{pref}(P)\right\}$. Therefore

$$
\begin{aligned}
\gamma \in P & \Longrightarrow \operatorname{pref}(\gamma) \subseteq \operatorname{pref}(P) \\
& \Longrightarrow \gamma \in \operatorname{closure}(P)
\end{aligned}
$$

It follows, that for any LT-property P, we have $P \subseteq \operatorname{closure}(P)$.
Since $P \subseteq \operatorname{closure}(P)$ we have

$$
\begin{equation*}
\operatorname{pref}(P) \subseteq \operatorname{pref}(\operatorname{closure}(P)) \tag{2}
\end{equation*}
$$

By transitivity of the set inclusion \subseteq, we can infer from (1) and (2):

$$
\operatorname{pref}(\sigma) \subseteq \operatorname{pref}(\operatorname{closure}(P))
$$

Therefore $\sigma \in \operatorname{closure}($ closure $(P))$.
" \supseteq ": Let $\sigma \in \operatorname{closure}(\operatorname{closure}(P))$. We have to prove that $\sigma \in \operatorname{closure}(P)$. By definition of $\operatorname{closure}(P)$, this is equivalent to showing that $\operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P)$:
Let $\hat{\sigma} \in \operatorname{pref}(\sigma)$. By definition,

$$
\operatorname{closure}(\operatorname{closure}(P))=\left\{\sigma^{\prime} \in\left(2^{A P}\right)^{\omega} \mid \operatorname{pref}\left(\sigma^{\prime}\right) \subseteq \operatorname{pref}(\operatorname{closure}(P))\right\}
$$

$\Longrightarrow \hat{\sigma} \in \operatorname{pref}(\operatorname{closure}(P)) \quad\left(* \sigma \in \operatorname{closure}(\operatorname{closure}(P))^{*}\right)$
$\Longrightarrow \exists \sigma^{\prime} \in \operatorname{closure}(P)$ such that $\hat{\sigma} \in \operatorname{pref}\left(\sigma^{\prime}\right)$ and $\operatorname{pref}\left(\sigma^{\prime}\right) \subseteq \operatorname{pref}(P)$.
$\Longrightarrow \hat{\sigma} \in \operatorname{pref}(P)$.
Therefore we have shown that $\operatorname{pref}(\sigma) \subseteq \operatorname{pref}(P)$.
(a) $P=W \operatorname{ords}((a \rightarrow \bigcirc \neg b) \mathrm{W}(a \wedge b))$ is a safety property:

By definition, P is a safety property iff

$$
\forall \sigma \in\left(2^{A P}\right)^{\omega} \backslash P . \quad \exists \hat{\sigma} \in \operatorname{pref}(\sigma) . \quad P \cap\left\{\sigma^{\prime} \in\left(2^{A P}\right)^{\omega} \mid \hat{\sigma} \in \operatorname{pref}\left(\sigma^{\prime}\right)\right\}=\emptyset
$$

According to the LTL semantics of W and \bigcirc, we have

$$
\left(2^{A P}\right)^{\omega} \backslash P=\operatorname{Words}(\neg \varphi)=\mathcal{L}_{\omega}\left(\left(\{b\}+\{a\}^{*} \cdot \emptyset\right)^{*} \cdot\{a\}^{+} \cdot(\{a, b\}+\{b\}) \cdot\left(2^{A P}\right)^{\omega}\right) .
$$

Choose $\sigma \in \operatorname{Words}(\neg \varphi)$.
Then there exists $k \geq 0$ such that $\sigma[k]=\{a\}$ and $b \in \sigma[k+1]$ and forall $i<k: a \in \sigma[i] \rightarrow b \notin \sigma[i+1]$.
Therefore $\hat{\sigma}=\sigma[0 . . k+1]$ is a minimal bad prefix for σ.
\Longrightarrow For each $\sigma \in\left(2^{A P}\right)^{\omega} \backslash P$, there exists a bad prefix.
$\Longrightarrow P$ is a safety property.
(b) The following NFA \mathcal{A} recognizes $\operatorname{BadPref}(P)$:

(c) $P^{\prime}=W \operatorname{ords}((a \rightarrow \bigcirc \neg b) \mathrm{U}(a \wedge b))$ is not a safety property:

Consider $\sigma=\emptyset^{\omega}$. Obviously $\sigma \notin P^{\prime}$ but any prefix $\hat{\sigma}$ of σ can be prolonged by the suffix $\{a, b\}^{\omega}$:

$$
\forall \hat{\sigma} \in \operatorname{pref}(\sigma) . \quad \hat{\sigma} \cdot(\{a, b\})^{\omega} \in P^{\prime} .
$$

The resulting trace is in P^{\prime}; therefore no bad prefixes can be defined for σ.
The following observation leads to a straightforward decomposition of P^{\prime} (cf. lecture notes, p. 243):

$$
\varphi \cup \psi \equiv(\varphi \mathbb{W} \psi) \wedge \diamond \psi
$$

Therefore we have

$$
(a \rightarrow \bigcirc \neg b) \cup(a \wedge b) \equiv(a \rightarrow \bigcirc \neg b) \mathrm{W}(a \wedge b) \wedge \diamond(a \wedge b)
$$

Considering the sets of words according to this equivalence, we have

$$
W \operatorname{cords}((a \rightarrow \bigcirc \neg b) \cup(a \wedge b))=W \operatorname{cords}((a \rightarrow \bigcirc \neg b) \mathrm{W}(a \wedge b)) \cap W \operatorname{ords}(\diamond(a \wedge b)) .
$$

Now we can decompose P^{\prime} into a safety property $P_{\text {safe }}$ and a liveness property $P_{\text {life }}$ as follows:

$$
\begin{aligned}
P_{\text {safe }} & =W \operatorname{ords}((a \rightarrow \bigcirc \neg b) \mathrm{W}(a \wedge b)) \\
P_{\text {live }} & =\operatorname{Words}(\diamond(a \wedge b))
\end{aligned}
$$

In part (a), we already showed that $P=P_{\text {safe }}=W \operatorname{ords}((a \rightarrow \bigcirc \neg b) \mathrm{W}(a \wedge b))$ is a safety property.
It remains to show that $P_{\text {live }}$ is indeed a liveness property:
$P_{\text {live }}=W \operatorname{ords}(\diamond(a \wedge b))=\mathcal{L}_{\omega}\left(\left(2^{\{a, b\}}\right)^{*} .\{a, b\} .\left(2^{\{a, b\}}\right)^{\omega}\right)$.
Therefore $\operatorname{pref}\left(P_{\text {live }}\right)=\left(2^{\{a, b\}}\right)^{*}$ and by definition, $P_{\text {live }}$ is a liveness property.

Solution 3

(a) Let $\psi=\square(a \leftrightarrow \bigcirc \neg a)$ and $A P=\{a\}$.

First we transform ψ into the equivalent basic LTL-formula φ :

$$
\begin{array}{rlr}
\psi & =\square(a \leftrightarrow \bigcirc \neg a) & \left(* \square \varphi \equiv \neg \diamond \neg \varphi^{*}\right) \\
& =\neg \diamond \neg(a \leftrightarrow \bigcirc \neg a) & \left(* \text { bijunktion }^{*}\right) \\
& =\neg \diamond \neg((a \wedge \bigcirc \neg a) \vee(\neg a \wedge \neg \bigcirc \neg a)) & \left(* \text { deMorgan }^{*}\right) \\
& =\neg \diamond(\neg(a \wedge \bigcirc \neg a) \wedge \neg(\neg a \wedge \neg \bigcirc \neg a)) & \left(* \diamond \varphi \equiv \operatorname{true} U_{\varphi}{ }^{*}\right) \\
& =\neg[\operatorname{true} \cup(\neg \underbrace{(a \wedge \bigcirc \neg a)}_{\varphi_{1}} \wedge \neg \underbrace{(\neg a \wedge \neg \bigcirc \neg a)}_{\varphi_{2}})]=\varphi &
\end{array}
$$

(b) Now we compute closure (φ):

$$
\begin{aligned}
\operatorname{closure}(\varphi)=\{ & \text { true }, \text { false }, a, \neg a, \bigcirc \neg a, \neg \bigcirc \neg a, \\
& \varphi_{1}, \neg \varphi_{1}, \varphi_{2}, \neg \varphi_{2}, \\
& \neg \varphi_{1} \wedge \neg \varphi_{2}, \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right), \\
& \left.\operatorname{true} \mathrm{U}\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right), \neg\left[\operatorname{true} \cup\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)\right]\right\}
\end{aligned}
$$

The elementary sets are:

| φ_{1} | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| true | a | $\bigcirc \neg a$ | $\overbrace{a \wedge \bigcirc \neg a}^{\varphi_{1}}$ | $\overbrace{\neg a \wedge \neg \bigcirc \neg a}^{\varphi_{2}}$ | $\neg \varphi_{1} \wedge \neg \varphi_{2}$ | true U $\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)$ | |
| B_{1} | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| B_{2} | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| B_{3} | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| B_{4} | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| B_{5} | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| B_{6} | 1 | 1 | 1 | 1 | 0 | 0 | 1 |

(c) The GNBA $\mathcal{G}_{\varphi}=\left(Q, \Sigma, \delta, Q_{0}, \mathcal{F}\right)$ is defined by:

$$
\begin{aligned}
Q & =\left\{B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}\right\} \\
\Sigma & =2^{\{a\}}=\{\emptyset,\{a\}\} \\
Q_{0} & =\left\{B_{1}, B_{5}\right\} \\
\mathcal{F} & =\left\{F_{\text {trueU }\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)}\right\} \\
F_{\text {trueU }\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)} & =\left\{B_{1}, B_{3}, B_{4}, B_{5}\right\}
\end{aligned}
$$

The transition relation δ is given by the following graph representation (where also the unreachable
 parts are outlined):

Let fair $=\square \diamond \underbrace{(b \wedge \neg a)}_{\Phi_{1}} \rightarrow \square \diamond \underbrace{\exists(b \cup(a \wedge \neg b))}_{\Psi_{1}}$ ．
Introduce new atomic propositions a_{1} and b_{1} and extend the labeling accordingly：

The strongly connected components of $T S$ are

$$
\begin{aligned}
& C_{1}=\left\{s_{0}, s_{1}\right\} \\
& C_{2}=\left\{s_{2}, s_{5}\right\} \\
& C_{3}=\left\{s_{3}, s_{4}\right\}
\end{aligned}
$$

Each execution fragment ultimately stays in one of these SCCs．According to the fairness assumption fair and the extended labeling，the SCC C_{3} is excluded from this set，i．e．no fair path visits states in C_{3} infinitely often．
We have $\operatorname{Sat}_{\text {fair }}(\exists \square$ true $)=\left\{s_{0}, s_{1}, s_{2}, s_{5}\right\}$ ．
Extend the labeling of those states with the new atomic proposition $a_{\text {fair }}$ ．
Now consider the CTL－formula $\Phi=\forall \square \forall \diamond a$ ．Rewriting Φ into existential normal form yields：

$$
\begin{aligned}
\Phi & =\forall \square \forall \diamond a \\
& =\neg \exists \diamond \neg \forall \diamond a \\
& =\neg \exists \diamond \exists \square \neg a \\
& =\neg \exists(\text { true } \mathrm{U} \exists \square \neg a)
\end{aligned}
$$

－Compute the fair satisfaction set for subformula $\Phi=\exists \square \neg a$ ：The state subgraph $G[\neg a]$ of $T S$ is

The only SCC in $G[\neg a]$ is C_{3} ．But we have

$$
\begin{aligned}
& C_{3} \cap \operatorname{Sat}\left(a_{1}\right) \neq \emptyset \\
& C_{3} \cap \operatorname{Sat}\left(b_{1}\right)=\emptyset
\end{aligned}
$$

Therefore $T=\emptyset$ and $\operatorname{Sat}_{\text {fair }}(\exists \square \neg a)=\left\{s \in S \mid \operatorname{Reach}_{G[\neg a]}(s) \cap T \neq \emptyset\right\}=\emptyset$ ．
Introduce new atomic proposition $a_{\exists \square \neg a}$ and extend the labeling of $T S$ according to $\operatorname{Sat}_{\text {fair }}(\exists \square \neg a)$ （In this case，no state labels are extended since $\left.\operatorname{Sat}_{\text {fair }}(\exists \square \neg a)=\emptyset\right)$ ．
－Now consider $\Phi=\exists\left(\right.$ true $\left.\cup a_{\exists ロ \neg a}\right)$ ：

$$
\operatorname{Sat}_{\text {fair }}\left(\exists\left(\operatorname{true} \cup a_{\exists \square \neg a}\right)\right)=\operatorname{Sat}\left(\exists\left(\operatorname{true} \mathrm{U}\left(a_{\exists \square \neg a} \wedge a_{\text {fair }}\right)\right)\right)=\emptyset
$$

－Therefore $\operatorname{Sat}_{\text {fair }}\left(\neg a_{\exists(\text { true } \cup \exists \square \neg a)}\right)=\left\{s \in S \mid a_{\exists(\text { trueUヨロ } \neg a)} \notin L(s)\right\}$ ．
This yields $\operatorname{Sat}_{\text {fair }}\left(\neg a_{\exists(\text { true } \cup \exists \square \neg a)}\right)=S$ ．

$T S_{i} \sim T S_{j}$ decision	$3^{*} 1$
formula:	3
bisimulation relation	4

- $T S_{1} \nsim T S_{2}$:

Let $\Phi=\forall \square((a \wedge \neg b) \rightarrow \exists \bigcirc(b \wedge \neg a))$.
We have $T S_{1} \not \models \Phi$ because $r_{2} \models a \wedge \neg b$, but there does not exist an $b \wedge \neg a$ successor state of r_{2}. On the other hand, $T S_{2} \vDash \Phi$: The only state in $T S_{2}$ that models $(a \wedge \neg b)$ is s_{1} and we have that $s_{0} \in \operatorname{Post}\left(s_{1}\right)$ and $s_{0} \models b \wedge \neg a$.

- $T S_{2} \sim T S_{3}$:

The following relation $\mathcal{R} \subseteq S_{2} \times S_{3}$ is a bisimulation relation:

$$
\begin{aligned}
\mathcal{R}:=\{ & \left(s_{0}, t_{0}\right),\left(s_{0}, t_{3}\right) \\
& \left(s_{1}, t_{2}\right),\left(s_{1}, t_{5}\right) \\
& \left.\left(s_{2}, t_{1}\right),\left(s_{2}, t_{4}\right)\right\}
\end{aligned}
$$

Graphically, this is outlined as follows:

- Now it follows directly that $T S_{1} \nsim T S_{3}$ (again by Φ).

