

LEHRSTUHL FÜR INFORMATIK II

RWTH Aachen · D-52056 Aachen · GERMANY

Winter term 2005/06

Prof. Dr. Ir. J.-P. Katoen

Exam in Model Checking February 10, 2006

Solution

(2 + 4 + 4 points)

Solution 1

approach:	2
$closure(closure(P)) \subseteq closure(P)$	4
$closure(P) \subseteq closure(closure(P))$	4

Let P denote an LT property. Then closure(P) is a safety property:

Proof:

We show that closure(P) = closure(closure(P)).

" \subseteq ": Let $\sigma \in closure(P)$. From the definition of *closure* one infers

$$pref(\sigma) \subseteq pref(P).$$
 (1)

By definition, $closure(P) = \{\sigma' \in (2^{AP})^{\omega} \mid pref(\sigma') \subseteq pref(P)\}$. Therefore

$$\gamma \in P \Longrightarrow pref(\gamma) \subseteq pref(P)$$
$$\Longrightarrow \gamma \in closure(P)$$

It follows, that for any LT-property P, we have $P \subseteq closure(P)$. Since $P \subseteq closure(P)$ we have

$$pref(P) \subseteq pref(closure(P))$$
 (2)

By transitivity of the set inclusion \subseteq , we can infer from (1) and (2):

$$pref(\sigma) \subseteq pref(closure(P))$$

Therefore $\sigma \in closure(closure(P))$.

"⊇": Let $\sigma \in closure(closure(P))$. We have to prove that $\sigma \in closure(P)$. By definition of closure(P), this is equivalent to showing that $pref(\sigma) \subseteq pref(P)$:

Let $\hat{\sigma} \in pref(\sigma)$. By definition,

$$closure(closure(P)) = \left\{ \sigma' \in \left(2^{AP}\right)^{\omega} \mid pref(\sigma') \subseteq pref(closure(P)) \right\}$$

 $\Longrightarrow \hat{\sigma} \in pref(closure(P)) \qquad (* \ \sigma \in closure(closure(P)) \ *) \\ \Longrightarrow \exists \sigma' \in closure(P) \text{ such that } \hat{\sigma} \in pref(\sigma') \text{ and } pref(\sigma') \subseteq pref(P). \\ \Longrightarrow \hat{\sigma} \in pref(P).$

Therefore we have shown that $pref(\sigma) \subseteq pref(P)$.

(3 + 4 + 3 points)

(a) $P = Words((a \to \bigcirc \neg b)W(a \land b))$ is a safety property:

By definition, P is a safety property iff

$$\forall \sigma \in (2^{AP})^{\omega} \setminus P. \quad \exists \hat{\sigma} \in pref(\sigma). \quad P \cap \left\{ \sigma' \in \left(2^{AP}\right)^{\omega} \mid \hat{\sigma} \in pref(\sigma') \right\} = \emptyset.$$

According to the LTL semantics of W and \bigcirc , we have

$$(2^{AP})^{\omega} \setminus P = Words(\neg\varphi) = \mathcal{L}_{\omega}\Big((\{b\} + \{a\}^*.\emptyset)^*.\{a\}^+.(\{a,b\} + \{b\}).(2^{AP})^{\omega}\Big).$$

Choose $\sigma \in Words(\neg \varphi)$.

Then there exists $k \ge 0$ such that $\sigma[k] = \{a\}$ and $b \in \sigma[k+1]$ and for all i < k: $a \in \sigma[i] \to b \notin \sigma[i+1]$. Therefore $\hat{\sigma} = \sigma[0..k+1]$ is a minimal bad prefix for σ .

 $\implies \text{For each } \sigma \in (2^{AP})^{\omega} \setminus P, \text{ there exists a bad prefix.} \\ \implies P \text{ is a safety property.}$

(b) The following NFA \mathcal{A} recognizes BadPref(P):

true
$$q_s$$
 $a \wedge b$ q_0 q_1 b q_1 true q_1 b q_1 b q_1 b q_1 b q_1 b q_2 q_3 q_4 q_4 q_4 q_5 q_6 q_1 q_1 q_1 q_2 q_3 q_4 q_4 q_5 q_6 q_1 q_1 q_2 q_3 q_4 q_4 q_5 q_5 q_4 q_5 q_5 q_4 q_5 q_4 q_5 q_4 q_5 q_5 q_4

(c) $P' = Words((a \to \bigcirc \neg b) U(a \land b))$ is <u>not</u> a safety property: Consider $\sigma = \emptyset^{\omega}$. Obviously $\sigma \notin P'$ but any prefix $\hat{\sigma}$ of σ can be prolonged by the suffix $\{a, b\}^{\omega}$:

 $\forall \hat{\sigma} \in pref(\sigma). \quad \hat{\sigma}. (\{a, b\})^{\omega} \in P'.$

The resulting trace is in P'; therefore no bad prefixes can be defined for σ .

The following observation leads to a straightforward decomposition of P' (cf. lecture notes, p. 243):

$$\varphi \mathsf{U} \psi \quad \equiv \quad (\varphi \mathsf{W} \psi) \land \Diamond \psi$$

Therefore we have

$$(a \to \bigcirc \neg b) \mathsf{U}(a \land b) \equiv (a \to \bigcirc \neg b) \mathsf{W}(a \land b) \land \diamondsuit (a \land b).$$

Considering the sets of words according to this equivalence, we have

$$Words((a \to \bigcirc \neg b) \mathsf{U}(a \land b)) = Words((a \to \bigcirc \neg b) \mathsf{W}(a \land b)) \cap Words(\diamondsuit(a \land b)).$$

Now we can decompose P' into a safety property P_{safe} and a liveness property P_{life} as follows:

$$P_{safe} = Words ((a \to \bigcirc \neg b) W(a \land b))$$
$$P_{live} = Words (\diamondsuit (a \land b))$$

In part (a), we already showed that $P = P_{safe} = Words((a \to \bigcirc \neg b)W(a \land b))$ is a safety property. It remains to show that P_{live} is indeed a liveness property: $P_{live} = Words(\diamond(a \land b)) = \mathcal{L}_{\omega}((2^{\{a,b\}})^*.\{a,b\}.(2^{\{a,b\}})^{\omega}).$ Therefore $pref(P_{live}) = (2^{\{a,b\}})^*$ and by definition, P_{live} is a liveness property.

(a) Let $\psi = \Box (a \leftrightarrow \bigcirc \neg a)$ and $AP = \{a\}$.

First we transform ψ into the equivalent basic LTL-formula φ :

$$\psi = \Box(a \leftrightarrow \bigcirc \neg a)$$

$$= \neg \Diamond \neg (a \leftrightarrow \bigcirc \neg a)$$

$$= \neg \Diamond \neg ((a \land \bigcirc \neg a) \lor (\neg a \land \neg \bigcirc \neg a))$$

$$= \neg \Diamond (\neg (a \land \bigcirc \neg a) \land \neg (\neg a \land \neg \bigcirc \neg a))$$

$$= \neg \left[\operatorname{true} \mathsf{U} \left(\neg \underbrace{(a \land \bigcirc \neg a)}_{\varphi_1} \land \neg \underbrace{(\neg a \land \neg \bigcirc \neg a)}_{\varphi_2} \right) \right] = \varphi$$

$$(* \ \Diamond \varphi \equiv \operatorname{true} \mathsf{U} \varphi *)$$

(b) Now we compute $closure(\varphi)$:

$$\begin{aligned} closure(\varphi) &= \{ \mathsf{true}\,, \mathsf{false}\,, a, \neg a, \bigcirc \neg a, \neg \bigcirc \neg a, \\ \varphi_1, \neg \varphi_1, \varphi_2, \neg \varphi_2, \\ \neg \varphi_1 \land \neg \varphi_2, \neg (\neg \varphi_1 \land \neg \varphi_2), \\ \mathsf{true}\, \mathsf{U}(\neg \varphi_1 \land \neg \varphi_2), \neg [\mathsf{true}\, \mathsf{U}(\neg \varphi_1 \land \neg \varphi_2)] \, \} \end{aligned}$$

The elementary sets are:

				φ_1	φ_2		
	true	a	$\bigcirc \neg a$	$a \land \bigcirc \neg a$	$\overline{\neg a \land \neg \bigcirc \neg a}$	$\neg \varphi_1 \land \neg \varphi_2$	$trueU(\neg\varphi_1\wedge\neg\varphi_2)$
B_1	1	0	0	0	1	0	0
B_2	1	0	0	0	1	0	1
B_3	1	0	1	0	0	1	1
B_4	1	1	0	0	0	1	1
B_5	1	1	1	1	0	0	0
B_6	1	1	1	1	0	0	1
							-

(c) The GNBA $\mathcal{G}_{\varphi} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ is defined by:

$$\begin{split} Q &= \{B_1, B_2, B_3, B_4, B_5, B_6\} \\ \Sigma &= 2^{\{a\}} = \{\emptyset, \{a\}\} \\ Q_0 &= \{B_1, B_5\} \\ \mathcal{F} &= \big\{F_{\mathsf{trueU}(\neg \varphi_1 \land \neg \varphi_2)}\big\} \\ F_{\mathsf{trueU}(\neg \varphi_1 \land \neg \varphi_2)} &= \{B_1, B_3, B_4, B_5\} \end{split}$$

The transition relation δ is given by the following graph representation (where also the unreachable parts are outlined):

(2 + 4 + 4 points)

Let $fair = \Box \diamondsuit \underbrace{(b \land \neg a)}_{\Phi_1} \to \Box \diamondsuit \underbrace{\exists (b \cup (a \land \neg b))}_{\Psi_1}.$

Introduce new atomic propositions a_1 and b_1 and extend the labeling accordingly:

The strongly connected components of TS are

$$C_1 = \{s_0, s_1\}$$
$$C_2 = \{s_2, s_5\}$$
$$C_3 = \{s_3, s_4\}$$

Each execution fragment ultimately stays in one of these SCCs. According to the fairness assumption fair and the extended labeling, the SCC C_3 is excluded from this set, i.e. no fair path visits states in C_3 infinitely often.

We have $Sat_{fair}(\exists \Box true) = \{s_0, s_1, s_2, s_5\}.$

Extend the labeling of those states with the new atomic proposition a_{fair} .

Now consider the CTL-formula $\Phi = \forall \Box \forall \Diamond a$. Rewriting Φ into existential normal form yields:

$$\begin{split} \Phi &= \forall \Box \forall \diamond a \\ &= \neg \exists \diamond \neg \forall \diamond a \\ &= \neg \exists \diamond \exists \Box \neg a \\ &= \neg \exists (\mathsf{true} \, \mathsf{U} \exists \Box \neg a) \end{split}$$

• Compute the fair satisfaction set for subformula $\Phi = \exists \Box \neg a$: The state subgraph $G[\neg a]$ of TS is

The only SCC in $G[\neg a]$ is C_3 . But we have

$$C_3 \cap Sat(a_1) \neq \emptyset$$
$$C_3 \cap Sat(b_1) = \emptyset$$

Therefore $T = \emptyset$ and $Sat_{fair}(\exists \Box \neg a) = \{s \in S \mid Reach_{G[\neg a]}(s) \cap T \neq \emptyset\} = \emptyset$. Introduce new atomic proposition $a_{\exists \Box \neg a}$ and extend the labeling of TS according to $Sat_{fair}(\exists \Box \neg a)$ (In this case, no state labels are extended since $Sat_{fair}(\exists \Box \neg a) = \emptyset$).

• Now consider $\Phi = \exists (\mathsf{true} \, \mathsf{U} a_{\exists \Box \neg a}):$

$$Sat_{fair}(\exists (\mathsf{true}\,\mathsf{U}a_{\exists \Box \neg a})) = Sat(\exists (\mathsf{true}\,\mathsf{U}(a_{\exists \Box \neg a} \land a_{fair}))) = \emptyset$$

• Therefore $Sat_{fair}(\neg a_{\exists(\mathsf{trueU}\exists\Box\neg a)}) = \{s \in S \mid a_{\exists(\mathsf{trueU}\exists\Box\neg a)} \notin L(s)\}$. This yields $Sat_{fair}(\neg a_{\exists(\mathsf{trueU}\exists\Box\neg a)}) = S$.

(3 * 1 + 3 + 4 points)

$TS_i \sim TS_j$ decision	$3^{*}1$
formula:	3
bisimulation relation	4

• $TS_1 \not\sim TS_2$:

Let $\Phi = \forall \Box ((a \land \neg b) \to \exists \bigcirc (b \land \neg a)).$

We have $TS_1 \not\models \Phi$ because $r_2 \models a \land \neg b$, but there does not exist an $b \land \neg a$ successor state of r_2 . On the other hand, $TS_2 \models \Phi$: The only state in TS_2 that models $(a \land \neg b)$ is s_1 and we have that $s_0 \in Post(s_1)$ and $s_0 \models b \land \neg a$.

• $TS_2 \sim TS_3$: The following relation $\mathcal{R} \subseteq S_2 \times S_3$ is a bisimulation relation:

$$\begin{aligned} \mathcal{R} &:= \{ (s_0, t_0), (s_0, t_3), \\ &(s_1, t_2), (s_1, t_5), \\ &(s_2, t_1), (s_2, t_4) \} \end{aligned}$$

Graphically, this is outlined as follows:

• Now it follows directly that $TS_1 \not\sim TS_3$ (again by Φ).