Datenstrukturen und Algorithmen SS 2001

Zusammenfassung und Lernhilfe

David Rybach, Daniel Schneider, Sascha Brandt

Juli 2001

Inhaltsverzeichnis

1	Grur	ndlagen		4
	1.1	Algorit	hmen und Komplexität	4
	1.2	Datenst	trukturen	5
		1.2.1	Listen	5
		1.2.2	Stacks (LIFO)	5
		1.2.3	Queues (FIFO)	5
		1.2.4	Bäume	6
		1.2.5	Travesierung eines Baumes (Durchlaufen)	7
	1.3	Entwur	fsmethoden	7
	1.4	Rekurs	ionsgleichungen	7
2	Sort	ieren		9
	2.1	Definiti	ionen	9
		2.1.1	Partielle Ordung	9
		2.1.2	Strikter Anteil einer Ordungsrelation	9
		2.1.3	Totale Ordnung	9
		2.1.4	Sortierproblem	9
		2.1.5	Unterscheidungskriterien	10
	2.2	Elemen	ntare Sortierverfahren	10
		2.2.1	SelectionSort	10
		2.2.2	InsertionSort	11
		2.2.3	BubbleSort	11
		2.2.4	Fazit	12
		2.2.5	Indirektes Sortieren	12
		2.2.6	BucketSort	12
	2.3	Höhere	Sortierverfahren	13
		2.3.1	QuickSort	13
		2.3.2	HeapSort	14
		2.3.3	MergeSort	15
		2.3.4	Untere und obere Schranke für das Sortierproblem	15
3	Sucl	hen in M	lengen	16
	3.1	Probler	nstellung	16
	3.2		ne Implementierung	16
		3.2.1	Ungeordnete Arrays und Listen	16
		3.2.2	Vergleichsbasierte Methoden	16
		3 2 3	Bitvektordarstellung (Kleines Universum)	17

	3.2.4	Spezielle Array-Implemtierung	7
3.3	Hashir	ng	8
	3.3.1	Begriffe und Unterscheidung	8
	3.3.2	Prinzip	8
	3.3.3	Hashfunktionen	9
	3.3.4	Offenes Hashing	9
	3.3.5	Geschlossenes Hashing	0
	3.3.6	Zusammenfassung Hashverfahren	0
3.4	Binäre	Suchbäume	0
	3.4.1	Allgemeine binäre Suchbäume	0
	3.4.2	Der optimale binäre Suchbaum	.1
3.5	Balanc	rierte Bäume	.2
	3.5.1	AVL-Bäume	.2
	3.5.2	(a, b)-Bäume	3

1 Grundlagen

1.1 Algorithmen und Komplexität

Laufzeit T(N) abhängig (u.a) von Eingabedaten

Prozedur / Rekursion: Beachte Speicherbedarf für Aktivierungsblöcke (enthalten Parameter, Rücksprungadresse, lokale Variablen)

Komplexitätsklassen:

Klasse	Bezeichnung
1	konstant
$\log(\log n)$	doppelt logarithmisch
logn	logarithmisch
n	linear
$n \log n$	überlinear
n^2	quadratisch
n^3	kubisch
n^k	polynomiell vom Grad k
2^n	exponentiell
n!	Fakultät
n^n	

meistens: maximal polynomiell praktikabel

O-Notation: asymptotisches Verhalten der Laufzeit in engen Schranken unter Vernachlässigung konstanter Faktoren.

- O(f) $\Omega(f)$ $\Theta(f)$ o(f) $\omega(f)$
- Rechenregeln:
 - Linearität:

$$g(n) = \alpha f(n) + \beta \quad \Rightarrow \quad g \in O(f)$$

- Addition:

$$f+g \in O(\max\{f,g\})$$

- Multiplikation:

$$a \in O(f) \land b \in O(g) \quad \Rightarrow \quad a \cdot b \in O(f \cdot g)$$

- Grenzwert:

$$\operatorname{Ex.} \lim_{n \to \infty} \frac{g(n)}{f(n)} \quad \Rightarrow \quad g \in O(f)$$

– Θ:

$$\Theta(f) = \Omega(f) \cap O(f)$$

1.2 Datenstrukturen

Elementare Datentypen	zusammengesetzte Datentypen	Pointer	
(int, cardinal)	(array, record)	Referenz	
Operationen durch	Konstanten Aufwand	Zugriffsaufwand abhängig	
Hardware-Instruktionen	für Zugriff	von der Größe der Struktur	
Benutzerdefinierte Datentypen			
(list, stack, queque, tree)			

1.2.1 Listen

• Operationen:

insert, delete, read

• *Implementierung mit Zeigern*:

Darstellung Anfang / Ende: Zeiger head \rightarrow 1. El.; letztes El. \rightarrow z proc init = head \cdot next = z; z \cdot next = z;

- Implementierung mit Arrays:
 - sequentielles Array
 - Cursor-Darstellung
 - vgl. Pointer-Implementierung, zweites Array mit Indizes für Nachfolgeelemente

1.2.2 Stacks (LIFO)

- Speicherung in seq. Ordung (vgl. Listen), aber nur Zugriff auf 1. Element
- Operationen:

Push: Neues Element am oberen Ende (Top) anfügen

Pop: Oberstes Element entfernen und zurückgeben

- Implementierung mit Zeigern: gleiche Datenstrukturen wie Liste, aber andere Operationen
- Implementierung mit Arrays:

	← top	
a_2		top bei jedem Zugriff verändern, Abfangen von Über- / Unterlauf
a_1		top bei jedem Zugim verandem, Ablangen von Ober-7 Omeriaar
a_0		

1.2.3 Queues (FIFO)

• Operationen:

Put: Neues Element am Ende der Queue anfügen Get: Vorderstes Element entfernen und zurückliefern

• Abfangen von Über- / Unterlauf notwendig

1.2.4 Bäume

- Menge von Knoten mit Relation, die Hierarchie definiert
- Grad eines Knoten: Zahl seiner unmittelbaren Nachfolger
- *Pfad*: Folge von unmittelbar aufeinander folgenden Knoten, Länge = Zahl der Knoten -1 = Zahl der Kanten
- Tiefe / Höhe eines Knoten: Pfadlänge bis zur Wurzel
- Tiefe / Höhe eines Baums: Pfadlänge Wurzel tiefstes Blatt
- Grad des Baums: Maximum der Grade seiner Knoten
- Darstellung: geschachtelte Menge, Einrückung, geschachtelte Klammerung
- *min / max Baumhöhe*:

```
T Baum, Grad d \ge 2, n Knoten: max Höhe = n - 1
```

```
min Höhe = \lceil \log d (n(d-1)+1) \rceil - 1 \le \lceil \log_d n \rceil
Binärbaum: h = \lceil \operatorname{Id} (n+1) \rceil - 1 \le \lceil \operatorname{Id} n \rceil
```

- Implementierung:
 - Pointer-Darstellung:

Wurzel, Blätter: root, z (vgl. Listen)

- Array-Einbettung:
 - * Gut für Darstellung vollständiger Bäume (alle Ebenen bis auf die letzte sind vollständig gefüllt, letzte Ebene von links nach rechts gefüllt)
 - * Durchnummerierung der Knoten: ebenenweise, von links nach rechts
 - * Vorgänger: pred = $\lfloor n/2 \rfloor$
 - * Nachfolger:

$$succ = \begin{cases} 2n & linker Sohn \\ 2n+1 & rechter Sohn \end{cases}$$

- Array von Poinern (d > 2)

```
* TYPE node = REF RECORD

key : ItemType;

sons : ARRAY [1..d] OF node;

END:
```

- * Nachteil: maximaler Grad vorgegeben, Platzverschwendung bei starker Gradvariation
- Pseudo-Binärbaum

- * Jeder Knoten verweist nur auf sein erstes Kind und seinen rechten Bruder
- * Array-Einbettung
 - ebenenweises Durchnummerieren der Knoten, Ablegen in einem Array → Geschwister-Knoten in aufeinanderfolgenden Positionen
 - · Zusätzliche Arrays zum Auffinden von Paaren / Left / Rightmostchild
 - · Durchlauf aller Nachfolger von i:

leftmc(i)...rightmc(i)

1.2.5 Travesierung eines Baumes (Durchlaufen)

- Kompletter Durchlauf
- · Tiefendurchlauf:

zu Knoten n werden rekursiv seine Teilbäume n_1, \ldots, n_k durchlaufen

- *Preorder*: betrachte n, durchlaufe n_1, \ldots, n_k
- *Postorder*: durchlaufe n_1, \ldots, n_k , betrachte n
- *Inorder*: durchlaufe n_1 , betrachte n, durchlaufe n_2, \ldots, n_k
- Breitendurchlauf (Levelorder):

Listen der Knoten nach ihrer Tiefe, bei gleicher Tiefe von links nach rechts

- Implementierung:
 - rekursiv
 - iterativ
 - * mit Stack (preoder)
 - * mit Queue (levelorder)

1.3 Entwurfsmethoden

- Divider & Conquer: top-down
- Dynamische Programmierung: bottom-up
- Memoization: Speicherung von Zwischenwerten zur Vermeidung von Ineffizienz bei Rekursionen

1.4 Rekursionsgleichungen

- sukzessives Einsetzen
- Master-Theorem

Form:
$$T(n) = \begin{cases} 1 & n = 1 \\ a \cdot T\left(\frac{a}{b}\right) + d(n) & n > 1 \end{cases}$$

mit
$$a \ge 1$$
, $b > 1$, $n \mapsto d(n)$
 \Rightarrow für $d(n) \in (n^{\gamma})$ mit $\gamma > 0$:

$$T(n) \in \left\{ egin{array}{ll} O(n^{\gamma}) & a < b^{\gamma} \ O(n^{\gamma} \log_b n) & a = b^{\gamma} \ O(n^{\log_b a}) & a > b^{\gamma} \end{array}
ight.$$

2 Sortieren

2.1 Definitionen

2.1.1 Partielle Ordung

Es sei $\mathcal M$ eine nicht leere Menge und $\leq \subseteq \mathcal M \times \mathcal M$ eine binäre Relation auf $\mathcal M$. Das Paar $(\mathcal M, \leq)$ heißt eine partielle Ordnung auf $\mathcal M$ genau dann wenn \leq die folgenden Eigenschaften erfüllt:

• **Relflexivität**: $x \le x$ $\forall x \in \mathcal{M}$

• Transitivität: $x \le y \land y \le z \Rightarrow x \le z \forall x, y, z \in \mathcal{M}$

• Antisymmetrie: $x \le y \land y \le x \Rightarrow x = y \quad \forall x, y \in \mathcal{M}$

2.1.2 Strikter Anteil einer Ordungsrelation

Für eine partielle Ordung \leq auf einer Menge \mathcal{M} definieren wir die Relation < durch:

$$x < y := x \le y \land x \ne y$$

Die Relation < heißt auch der *strikte Anteil von* \le .

2.1.3 Totale Ordnung

Es sei \mathcal{M} eine nicht leere Menge und $\leq \subseteq \mathcal{M} \times \mathcal{M}$ eine binäre Relation über $\mathcal{M}. \leq$ heißt eine *totale Ordung auf* \mathcal{M} genau dann wenn gilt:

• (\mathcal{M}, \leq) ist eine partielle Ordung und

• Trichotomie: $x < y \ \lor \ x = y \ \lor \ y < x \qquad \forall x, y \in \mathcal{M}$

2.1.4 Sortierproblem

Gegeben sei eine Folge a [1],...,a [N] von Records mit einer Schlüsselkomponente a [i]. key (i=1,...,N) und eine totale Ordnung \leq auf der Menge aller Schlüssel. Das *Sortierproblem* besteht darin, eine Permutation π der ursprünglichen Folge zu bestimmen, so dass gilt:

$$\mathsf{a}[\pi_1].\mathsf{key} \leq \mathsf{a}[\pi_2].\mathsf{key} \leq \ldots \leq \mathsf{a}[\pi_{N-1}].\mathsf{key} \leq \mathsf{a}[\pi_N].\mathsf{key}$$

2.1.5 Unterscheidungskriterien

- Sortiermethode
- Effizienz ¹
- intern / extern (Records im Arbeitsspeicher / Platten)
- *direkt* / indirekt (Pointer / Array-Indizes)
- im Array oder nicht im Array
- in situ (ein Array ohne zusätzliches Hilfsfeld)
- allgemein / speziell ²
- stabil (Reihenfolge von Records mit gleichen Keys bleibt erhalten)

2.2 Elementare Sortierverfahren

2.2.1 SelectionSort

Sortieren durch Auswahl

Prinzip: Im *i*-ten Durchlauf der Schleife:

- Bestimme den Datensatz mit dem kleinsten Schlüssel aus a[i],...,a[N]
- Vertausche dieses Minimum mit a[i]

Algorithmus:

```
FOR i :=1 TO N-1 \min := \min_{i < j \leq N} \text{ a[j]} \text{Tausche a[min]} \leftrightarrow \text{a[i]} \text{END;}
```

Komplexität: N-1 Schleifendurchläufe, pro Schleifendurchgang i eine Vertauschung ($\hat{=}$ 3 Bewegungen und N-i Vergleiche). \Rightarrow

- $3 \cdot (N-1)$ Bewegungen
- $\frac{N \cdot (N-1)}{2}$ Vergleiche

Vorteil: Jeder Datensatz wird nur einmal bewegt ⇒ besonders geeignet für Sortieraufgaben mit großen Datensätzen.

 $^{^{1}}O(N^{2})$ für elementare, $O(N\,\log N)$ für höhere Sortierverfahren

²speziell: z.B. BucketSort

2.2.2 InsertionSort

Sortieren durch Einfügen

Prinzip: Im *i*-ten Durchgang der Schleife (i = 2, ..., N). Teilfolge a [1], ..., a [i-1] bereits sortiert.

• Füge den Datensatz a [i] an der korrekten Position der bereits sortierten Teilfolge ein.

Algorithmus:

```
FOR i := 2 TO N
    v := a[i]; j := i;
    WHILE (a[j-1] > v) AND (j > 1)
        a[j] := a[j-1];
        DEC j;
    END;
    a[j] := v;
END;
```

Komplexität:

- Best Case (Vollständig vorsortiert): N-1 Vergleiche; 2(N-1) Bewegungen
- Worst Case (Umgekehrt sortiert):

$$\frac{N^2}{2} + \frac{N}{N} - 1$$
 Vergleiche $\frac{N^2}{2}$ Bewegungen

• Average Case: $\approx \frac{N^2}{4}$ Vergleiche, $\approx \frac{N^2}{4}$ Bewegungen.

Vorteil: Für "fast sortierte" Folgen fast lineares Verhalten. Kann vorhandene Ordung besser ausnutzen

2.2.3 BubbleSort

Sortieren durch wiederholtes Vertauschen von benachbarten Array-Elementen

Prinzip: Im *i*-ten Durchlauf der Schleife $(i = N, N - 1, \dots, 2)$:

• Schleife j=2,3,...,i: ordne a [j-1] und a [j]

Algorithmus:

```
FOR i := N TO 1

FOR j := 2 TO i

IF a[j-1] > a[j]

Tausche a[j] \leftrightarrow a[j-1]

END;

END;
```

Komplexität: Anzahl der Vergleiche ist unabhängig von der Vorsortierung

- $\frac{N(N-1)}{2}$ Vergleiche
- Best Case: 0 Bewegungen
- Worst Case: $\approx 3N^2/2$ Bewegungen
- Average Case: $\approx 3N^2/4$ Bewegungen

Vorteil: *Kein* Vorteil, da immer $N^2/2$ Vergleiche \Rightarrow ineffizient.

2.2.4 Fazit

Einsatzgebiete: InsertionSort für fast sortierte Folgen, SelectionSort für große Datensätze, BubbleSort nie. InsertionSort und SelectionSort sollten nur für Sortierprobleme mit $N \le 50$ eingesetzt werden, sonst höherere Verfahren.

2.2.5 Indirektes Sortieren

Bei Sortierproblemen mit sehr großen Datensätzen großer Rechenaufwand für das Vertauschen von Records. Deshalb sortiert man nur Verweise auf die Datensätze.

Verfahren:

- Index-Array p[1..N] mit p[i] = i
- Für Vergleiche erfolgt Zugriff auf einen Record: a[p[i]]
- Vertauschen der Indizes statt der Array-Elemente
- Evtl. werden nach dem Sortieren die Records selbst umsortiert (O(N))
 - Permutation mit zusätzlichen Array b: b[i] := a[p[i]]
 - In situ, in place: Ohne Zusätzliches Array:
 - * Wenn $p[i] = i\sqrt{}$
 - * Wenn p[i] # i zyklisch vertauschen:
 - 1. Record kopieren t := a[i] \Rightarrow "Loch" an Position i
 - 2. Iterieren

2.2.6 BucketSort

Voraussetzung: Schlüssel können als ganzzahlige Werte im Bereich 0,...,*M*-1 dargestellt werden, so dass sie als Array-Index verwendet werden können.

Prinzip:

- Erstelle Histogramm (zähle Häufigkeit von Keys)
- Berechne aus Histogramm die Postion für jeden Record
- Bewege die Records an die richtige Postition

Algorithmus:

```
Initialisiere count[]
Erstelle Histogramm
FOR i:= 1 TO M-1
    count[j] := count[j-1] + count[j];
FOR i := N TO 1
    b[count[a[i]]] := a[i];
    DEC count[a[i]];
```

Komplexität: $T(N) = O(\max\{N, M\})$

Eigenschaften: Stabil, Arbeitet nicht in situ

2.3 Höhere Sortierverfahren

2.3.1 QuickSort

Prinzip: Folgt dem Devide-and-Conquer-Ansatz

• Partitioniere das Array a [1..r] bzgl. eines Pivot-Element a [k] in zwei Teilarrays a [1..k-1] und a [k+1..r], so dass gilt

$$\mathbf{a}[\mathbf{i}] \le \mathbf{a}[\mathbf{k}] \qquad \forall i \in \{l, \dots, k-1\}$$

 $\mathbf{a}[\mathbf{k}] \le \mathbf{a}[\mathbf{j}] \qquad \forall i \in \{k+1, \dots, r\}$

• *Rekursion*: linkes a [1 ...k-1] und rechtes Teilarray a [k-1 ...r] bearbeiten

Algorithmus:

```
Quicksort (1, r : INT)
    IF 1 < r THEN
        k := Partition (1, r);
        Quicksort (1, k-1);
        Quicksort (k+1, r);
    END;

END;

Partition (1, r : INT)
    PivotElement := a[r];
    REPEAT
        suche i von links mit a[i] >= PivotElement;
        suche j von rechts mit a[j] <= PivotElement;
        tausche a[i] <-> a[j];
    UNTIL Zeiger kreuzen
```

a[i] und a[j] rückvertauschen
a[i] und a[r] vertauschen

RETURN i als Position des PivotElements;
END;

Komplexität: Für obige Implentierung:

- *Best Case*: $T(N) = (N+1) \cdot \text{ld}(N+1)$
- Average Case: $T(N) = 1.386 \cdot (N+1) \cdot ld(N+1)$
- Worst Case:

$$T(N) = \frac{(N+1)\cdot(N+2)}{2} - 3$$

Eigenschaften:

- Effizienz durch nur einen Schlüsselvergleich in der innersten Schleife
- Durch Rekursionsoverhead nicht geignet für kleine Folgen
- Verbesserungen ³
 - PivotElement := (a[1] + a[r] / 2)
 - PivotElement := kleinstes Element von drei zufällig gewählten Elementen
 - Ineffizienz bei kleinen Arrays kann behoben werden durch anwenden von z.B. InsertionSort ab einer TeilArray-Größe von z.B. 12 oder 22
 - Minimierung des Speicherplatzbedarfs für die Rekursion: Das kleinere Teilarray zuerst bearbeiten
 - Iterativ implentieren (erfordert Stack)

2.3.2 HeapSort

Definition Heap, Heap-Eigenschaft: Ein Heap ist ein links-vollständiger Binärbaum, der in einem Array eingebettet ist:

• Ein Array a [1 ... N] erfüllt die *Heap-Eigenschaft*, wenn gilt:

$$a\left[\left\lfloor \frac{i}{2} \right\rfloor\right] \geq a[i] \qquad \forall i = 2, \dots, N$$

• Ein Array a [1 ..., N] ist ein *Heap* beginnend an Position l = 1, ..., N, falls:

$$\mathtt{a}\left[\left|rac{i}{2}
ight|
ight] \geq \mathtt{a}[\mathtt{i}] \qquad \forall i = \underline{2l}, \ldots, N$$

Jedes Array a [1 ...N] ist ein Heap beginnend in Positon l = |N/2| + 1

³siehe auch Implementierung in Sorter v0.6, (www.rybach.de)

Algorithmus:

- 1. Wandle das Array a [1 ... N] in einen Heap um.
- 2. FOR i := 1 TO N-1
 - a) Tausche a [1] (Wurzel) \leftrightarrow a [N-i-1]
 - b) Stelle für das Rest-Array a [1 ... (N-i)] die Heap-Eigenschaft wieder her
- 3. Algorithmus für Heap-Eigenschaft:

```
DownHeap (i, k : INT) v := a[i]

LOOP

Wenn a[i] Blatt \rightarrow RETURN

Bestimme, wenn existiert, größeren der beiden Söhne \rightarrow j

Wenn beide kleiner als v \rightarrow RETURN

a[i] := a[j]; i := j;

END;

a[i] := v;
```

Komplexität: HeapSort sortiert die Folge a [1 ...N] mit höchstens

$$2N \operatorname{Id}(N+1) - 2N$$

Vergleichen.

2.3.3 MergeSort

MergeSort sortiert nach der Devide-and-Conquer-Strategie.

Komplexität:

• worst case = average case: NldN

Eigenschaften: zusätzlicher Speicherplatz O(N), nicht in situ, aber sequentiell

2.3.4 Untere und obere Schranke für das Sortierproblem

Obere Schranke: $T_{\mathcal{A}}(N) := \text{Zahl der Schlüsselvergleiche um eine } N$ -elentige Folge von Schlüsselelementen mit dem Algorithmus \mathcal{A} zu sortieren.

$$T_{\mathcal{A}}(N) \leq N \lceil \mathrm{Id}N \rceil - N + 1$$

Untere Schranke: $T_{\min}(N) := \text{Zahl der Vergleiche für den effizientesten Algorithmus}$

$$T_{\min}(N) \ge N \operatorname{ld} N - N \operatorname{ld} e$$

3 Suchen in Mengen

3.1 Problemstellung

- *Gegeben*: Menge von Records (key + weitere Komponenten), ohne Duplikate (bzgl. Schlüssel oder voller Record)
- Typische Aufgabe: Finde zu einem gegebenen Key den Record und führe ggf. eine Operation aus
- Hier primär Betrachtung des Dictionary-Problem
- Notationen:

```
Universum: U := Menge aller möglichen Schlüssel Menge: S \subseteq U
```

• Wörterbuch-Operationen:

- Search (x, S): Falls $x \in S$, liefere den vollen zu x gehörigen Record, sonst Meldung " $x \notin S$ ".
- Insert (x, S): Füge Element x zur Menge X hinzu: $S := S \cup \{x\}$; Fehler, wenn x ∈ S
- Delete (x, S): Entferne Element x aus der Menge S: $S := S \setminus \{x\}$; Fehler, wenn $x \notin S$

3.2 Einfache Implementierung

3.2.1 Ungeordnete Arrays und Listen

 $Darstellung \rightarrow Vergleiche \ 1.2.1$

- Liste im Array
- verkettete Liste

3.2.2 Vergleichsbasierte Methoden

Voraussetzung: Existenz einer Ordungsrelation Betrachtung von Daten im geordneten Array S mit S[i] < S[i+1] für $1 \le i \le n-1$.

Allgemeines Programmschema

```
S : ARRAY [0 ...n+1] OF element;
S[0] := -\infty;
S[n+1] := +\infty;
PROCEDURE Search (a, S)
VAR low, high : element;
BEGIN
    low := 1; high := n;
    next := zahl \in [low..high]
    WHILE (a # S[next]) AND (low < high) DO
        IF a < S[next] THEN</pre>
            high := next -1;
        ELSE low := next +1;
        next := zahl \in [low..high]
    END;
        IF a = S[next] THEN
            (* a an Pos next gefunden *)
        ELSE
            (* a nicht gefunden *)
```

3.2.3 Bitvektordarstellung (Kleines Universum)

Annahme : N = |U| = vorgegebene maximale Anzahl von Elementen $S \subset U = \{0,1,\ldots,N-1\}$

Methode: Key = Index im Array: ARRAY OF BOOLEAN

- Bit[i] = FALSE, $i \notin S$
- Bit[i] = TRUE, $i \in S$

Komplexität:

- Operationen O(1)
- Init O(N)
- Platz O(N)

3.2.4 Spezielle Array-Implemtierung

Prinzip: Bitverktor-Darstellung mit zwei Hilfsarrays ohne O(N)-Initialisierung

Deklarationen:

- Bit[0 ...N-1] : ARRAY OF BOOLEAN Bitvektor
- Ptr[0 ...N-1] : ARRAY OF INTEGER Pointer-Array

• Stk[0 ...N-1] : ARRAY OF INTEGER Stack-Array

Methode: Invariante: $i \in S$ \Leftrightarrow

- Bit[i] = TRUE \wedge
- $0 \le Ptr[i] \le top \land$
- Stk[Ptr[i]] = i

Anfangs: top = -1

Komplexität:

- Platz: O(N)
- Alle Standard-Operationen: O(1)

3.3 Hashing

3.3.1 Begriffe und Unterscheidung

- offenes / geschlossenes Hashing
- Kollisionsstrategien:
 - lineares Sondieren
 - quadratisches Sondieren
 - Doppelhashing
- Hash-Funktionen
- erweiterbares Hashing in Verbindung mit Hintergrundspeicher

3.3.2 Prinzip

• Es stehen *m* Speicherplätze in *Hashtabelle T* zur Verfügung:

T : ARRAY [0..m-1] OF element

• Key $x \in U = \{0, ..., N-1\}$ wird mittles *Hashfunktion* h(x) auf Speicherplatz in T abgebildet:

$$h: U \rightarrow \{0,1,\ldots,m-1\}$$

 $x \mapsto h(x)$

x wird in T [h(x)] gespeichert, falls dieser Platz frei ist.

• In der Regel $m \ll N \Rightarrow Kollisionen$:

$$h(x) = h(y)$$
 fuer $x \neq y$

- Bei Kollision: entweder Verweis auf andere Adresse (offenes Hashing 3.3.4), oder Ermittlung eines anderen Speicherplatzes mittles *Sondierungsfunktion* (geschlossenes Hashing 3.3.5)
- Bei search (x, S): zunächst h(x) berechnen, dann x in T[h(x)] suchen

3.3.3 Hashfunktionen

Anforderungen

- h(x) surjektiv \Rightarrow ganze Hashtabelle wird abgedeckt
- Schlüssel sollen gleichmässig verteilt werden
- Berechnung soll effizient sein (kein hoher Rechenaufwand)

Divisions-Rest-Methode

Sei m die Größe der Hashtabelle

 $h: x \mapsto x \bmod m$

Wähle *m* möglichst so:

- *m* prim
- *m* teilt nicht $2^i \pm j$, wobei *i*, *j* kleine Zahlen $\in \mathbb{N}_0$

Nachteil: Aufeinanderfolgende Schlüssel werden auf aufeinanderfolgende Speicherplätze abgebildet ⇒ *Clustering*

Mittel-Quadrat-Methode

Ziel: Auch nahe beieinanderliegende Schlüssel auf die ganze Hashtabelle verteilen.

 $h(x) = \text{mittlerer Block von Ziffern von } x^2$

Beispiel (m = 100):

X	x mod 100	x^2	h(x)
127	27	16 12 9	12

3.3.4 Offenes Hashing

- Jeder Behälter wird durch eine beliebig erweiterbare Liste von Schlüsseln dargestellt.
- Ein Array von Zeigern verwaltet die Behälter:

HashTable : ARRAY [0..m-1] OF REF ListElement

- *Belegungsfaktor*: $\alpha = \frac{n}{m}$
- Komplexität
 - Adresse berechnen, Behälter aufsuchen: O(1)
 - Liste durchsuchen:
 - * Average Case (erfolgr. Suche): $O(1+\frac{\alpha}{2})$
 - * Worst Case (erfolglose Suche): $O(\alpha) = O(n)$
 - Platz: O(m+n)

3.3.5 Geschlossenes Hashing

• Arbeitet mit statischem Array:

HashTable : ARRAY [0..m-1] OF Element

- Kollisionen werden mit erneuter Adressberechnung behandelt, mittels Sondierungsfunktion
- Sondierungsfunktionen h(i,x):

Lineares Sondieren:

$$h(i,x) = (h(x) + c \cdot i) \mod m$$
 $1 \le j \le m-1; c \in \mathbb{N}$

c und m sollten teilerfremd sein.

Linares Sondieren tendiert zum *primary clustering* (Kettenbildung) ⇒ ineffizient

Quadratisches Sondieren :

$$h(i,x) = (h(x) + i^2) \bmod m \qquad 0 \le i \le m - 1$$

Primäres Clustering wird verhindert, es enstehen also keine langen Ketten, Sekundäres Clustering tritt trotzdem auf, d.h. Schlüssel mit gleichem Hashwert werden auf die gleiche Sondierungsbahn gebracht.

Doppelhashing:

$$h(x,i) = (h(x) + h'(x) \cdot i^2) \bmod m$$

Wobei h(x) und h'(x) unabhängig sind.

Eigenschaften:

- Die mit Abstand beste Kollisionsstrategie
- Kaum unterscheidbar von idealem Hashing

3.3.6 Zusammenfassung Hashverfahren

- Average Case: allgemein effizientes Verhalten (O(1))
- Worst Case: Operationen mit O(n)
- Nachteil: Alle Operationen, die auf einer Ordung basieren werden nicht unterstützt.
- Anwendungen, wenn $|U| \gg |S|$ und dennoch ein effizienter Zugriff auf die Elemente wünschenswert ist.

3.4 Binäre Suchbäume

3.4.1 Allgemeine binäre Suchbäume

Definition

Ein binärer Suchbaum für die *n*-elementige Menge $S = \{x_1 \le x_2 \le ... \le x_n\}$ ist ein binärer Baum mit *n* Knoten $\{v_1...v_n\}$. Die Knoten sind mit den Elementen von *S* beschriftet, d.h. es gibt ein injektive

Abbildung *Inhalt* : $\{v_1 \dots v_n\} \to S$. Die Beschriftung bewahrt die Ordnung, d.h. wenn v_i im linken Unterbaum, v_i im rechten und v_k Wurzel des Baums ist, dann gilt:

$$Inhalt[v_i] < Inhalt[v_k] < Inhalt[v_j]$$

Operationen

Search:

```
Search (a, S)
v := Root of T;
WHILE (v is node) AND (a ≠ Inhalt[v]) DO
IF a < Inhalt[v] THEN
v := LeftSon[v];
ELSE
v := RightSon[v];</pre>
```

Insert: Gehe entsprechend der Binärbaum-Ordung durch den Baum, bis zu einem Blatt, dahinter wird eingefügt

Delete: Fallunterscheidung, wenn a der zu entfernende Key ist und v der Knoten mit Inhalt[v] = a:

- 1. v ist Blatt
 - streiche v aus dem Baum
- 2. v hat mindestens ein Blatt als Sohn
 - ersetze v durch den anderen Sohn
 - streiche v und das Blatt aus dem Baum
- 3. v hat zwei Söhne die innere Knoten sind
 - ersetze v mit dem rechtesten Unterknoten im linken Unterbaum von $v \rightarrow w$
 - entferne w, mit Verfahren 2

Zeitkomplexität

- Search, Insert, Delete: O(h(T)) mit h(T) = Höhe des Baums T
- ListOrder: = O(|S|) = O(n)

3.4.2 Der optimale binäre Suchbaum

Diese Bäume sind gewichtet mit der Zugriffsverteilung, die die Häufigkeit (oder Wichtigkeit) der Elemente von *S* wiederspiegelt.

Definition Zugriffsverteilung

Sei $S = \{x_1 \le x_2 \le ... \le x_n\}$ und x_0, x_{n+1} Sentinels mit $x_0 \le x_i \le x_{n+1} \ \forall i = 1, ..., n$. Die Zugriffsverteilung ist ein (2n+1)-Tupel $(\alpha_0, \beta_1, \alpha_1, \beta_2, \alpha_2, ..., \alpha_n, \beta_n)$ von Wahrscheinlichkeiten, für das gilt:

- $\beta_i \ge 0$ ist die Wahrscheinlichkeit, dass eine Search(a, S)-Operation erfolgreich im Knoten $x_i = a$ endet
- $\alpha_i \ge 0$ ist die Wahrscheinlichkeit, dass eine Search(a, S)-Operation *erfolos* mit $a \in (x_i, x_{i+1})$ endet

Konstruktion

Mittels Bellmann-Knuth-Algorithmus (s. Skript)

3.5 Balancierte Bäume

Balance-Kriterien:

- Gewichtsbalancierte Bäume (BB-Bäume): Anzahl der Blätter in den Unterbäumen möglichst gleich
- Höhenbalancierte Bäume: Höhenunterschied der Unterbäume möglichst gering. Untertypen:

3.5.1 AVL-Bäume

Definition

Ein AVL-Baum ist ein binärer Suchbaum mit einer Struktur Invarianten: Für jeden Knoten gilt, dass sich die Höhen seiner beiden Teilbäume höchstens um eins unterscheiden.

Höhe eines AVL-Baums

Sei N(h) die minimale Anzahl der Knoten in einem AVL-Baum der Höhe h.

$$N(h) = 1 + N(h-1) + N(h-2)$$
$$N(h) \le n \le N(h+1)$$

Operationen

Um die Struktur-Invariante eines AVL-Baums auch nach eine Update-Operation wiederherzustellen, benötigt man *Rebalancierungs-Operationen*. Dabei wird die Balance rückwärts auf dem ganzen Pfad vom veränderten Knoten bis zur Wurzel durchgeführt. Ist die Balance an einer Stelle gestört, kann sie mittels *Rotation* oder *Doppelrotation* wiederhergestellt werden.

Rotation: Von einem betroffenen Knoten betrachtet man nur den von ihm induzierten Teilbaum. Einfache Rotation muß durch geführt werden, wenn der betroffene (höhere) Teilbaum *außen* liegt.

Der betroffene Knoten rotiert zum kürzesten Teilbaum hinunter und übernimmt den innersten Knoten des heraufrotierenden Knotens als inneren Sohn.

Doppelrotation: Eine Doppelrotation muß durchgeführt werden, wenn der betroffene Teilbaum *innen* liegt. Es wird zunächst eine Außen-Rotation im Vaterknoten der Wurzel des betroffenen Teilbaums durchgeführt, und anschließend eine Rotation in entgegengesetzter Richtung im Vaterknoten dieses Knotens.

Komplexität

- Balance-Überprüfung: $O(\operatorname{ld} n)$
- (Doppel-) Rotation: O(1)
- Standard-Operationen: $O(\operatorname{ld} n)$
- Platzkomplexität: O(n)

3.5.2 (a, b)-Bäume

Prinzip

Bei einem (*a*, *b*)-Baum haben alle Blätter gleiche Tiefe. Die Zahl der Söhne eines Knotens liegt zwischen *a* und *b*.

Speicherung einer Menge als (a, b)-Baum

 $S = \{x_1 < \ldots < x_n\} \subseteq U$ geordnete Menge, T leerer (a, b)-Baum mit n Blättern. Dann wird S in T so gespeichert:

- 1. Die Elemente von S werden in den Blättern w von T entsprechen ihrer Ordung von links nach rechts gespeichert.
- 2. Jedem Knoten V werden die $\rho(v)$ (= Anz. Söhne von v) -1 Elemente $k_1(v) < k_2(v) < \ldots < k_{\rho(v)-1}(v) \in U$ so zugeordnet, dass für alle Blätter w im i-ten Unterbaum von v mit $1 < i < \rho(v)$ gilt:

$$k_{i-1}(v) < Inhalt[w] \le k_i(v)$$

Für einen (a, b)-Baum mit n Blättern und Höhe h läßt sich folgendes ableiten:

$$\begin{array}{lll} 2a^{h-1} & \leq n \leq & b^h \\ \log_b n & \leq h \leq & 1 + \log_a \frac{n}{2} \end{array}$$

Speicherausnutzung

Jeder Knoten muß (2b-1) Speicherzellen besitzen, mit b Zeigern auf Söhne und b-1 Schlüsseln.

Standard-Operationen

- Search: Pfad von der Wurzel zum Blatt auswählen, über Elemente $k_1(v),\dots,k_{\rho(v)-1}(v)$ an jedem Knoten v
- Insert: Nach Insert müssen evtl. wiederholt Knoten gespalten werden, falls diese zu voll sind.
- Delete: Nach Delete müssen evtl. Knoten *verschmolzen* oder *gestohlen* werden, um den Baum zu rebalancieren

Alle Operationen haben Komplexität von $O(\log n)$ mit n = |S|