Vorlesung

Allgemeine Biologie für Informatiker und Mathematiker 1

Teilgebiet Genetik 2

Vorlesung

Allgemeine Biologie für Informatiker und Mathematiker 1

Teilgebiet Genetik 2

Inhalt

- Grundlagen der Transkription und Translation
- Genexpression in Prokaryoten
- Organisation und Expression des eukaryotischen Genoms
- Gentransfersysteme (Konjugation, Transduktion, Transformation, Transposons)
- Gentechnologie

$$
\begin{aligned}
& \text { mRNA: } \quad 5^{\prime}-G-C-G-G-C-G-A-C-G-C-G-C-A-G-U-3^{\prime}
\end{aligned}
$$

Der genetische Code
$\left.\begin{array}{l|l|l}\left.\hline \begin{array}{l}\text { UUU } \\
\text { UUC } \\
\text { UUA } \\
\text { UUG }\end{array}\right\} \text { phe* } & \left.\begin{array}{l}\text { UCU } \\
\text { UCC } \\
\text { UCA } \\
\text { UCG }\end{array}\right\} & \left.\begin{array}{l}\text { UAU } \\
\text { UAC }\end{array}\right\} \text { tyr } \\
\text { UAA } \\
\text { UAG }\end{array}\right\}$ 'stop' \(\left.\begin{array}{c}UGU

UGC\end{array}\right\}\) cys | UGA |
| :--- |
| UGG 'stop' |
| trp |

DNase-Schutzexperimente

Man hat eine Reihe von Methoden eingesetzt, um die Wechselwirkung zwischen RNA-Polymerase und Promotorsequenzen zu erforschen. Die bedeutendste dieser Techniken nennt man Deoxyribonuclease (DNase)-Schutzverfahren.
DNase ist ein Enzym, das DNA abbaut, indem es Phosphodiesterbindungen spaltet. Die Auswirkung von DNase-Aktivität auf reine DNA besteht also darin, daß die Doppelhelix zu einzelnen Nucleotiden abgebaut wird.

Wenn jedoch ein gereinigtes DNA-Fragment einen Promotor enthält, an den ein RNA-Polymerase-Protein gebunden ist, so sind nicht alle Phosphodiesterbindungen für den Angriff der DNase zugänglich: Einige werden durch das gebundene Enzym „geschützt". Durch die DNase-Behandtung erhält man demnach einige wenige Mononucleotide und ein ungespaltenes DNA-Fragment. Die Größe dieses DNA-Abschnitts
gibt Auskunft über das Ausmaß der interaktion zwischen RNA-Polymerase und DNA: Seine Nucleotidsequenz (die man durch DNA-Sequenzierung ermitteln kann) zeigt genau, welcher Teil des Moleküls durch das Enzym geschützt ist.

Protease zum geschütztes DNA-Fragment
Die Ergebnisse dieser Experimente zeigen, daß die E. coli-Polymerase zwischen 41 und 44 bp der DNA einschließlich der - 10 - und der-35-Box sowie einen kleinen Abschnitt der umgebenden Sequenz abdeckt.

(tRNAf

Lactoseverwertung

Eigenschaften des

 Tryptophan-OperonsEin zweites Operon zeigt ein Beispiel für andere Strategien der Genregulation bei E. coli. Das troOperon besteht aus fünf Genen,
die an der Synthese der Aminosäure Tryptophan beteiligt sind. Die Expression des Operons wird durch den tro-Repressor kontrolliert, der an den trp-Operator bindet und damit die Transkription verhindert. In diesem Fall jedoch
kann der Repressor nichț von sich aus an den Operator binden. Die Repression des Operons erfolgt nur, wenn der trp-Repressor Tryptophan bindet:
kein Tryptophan

Tryptophan vorhanden

Das ist natürich völlig logisch, denn Tryptophan ist das Produkt des biochemischen Weges, den das Operon kontrolliert. Wenn kein Tryptophan vorhanden ist, werden die Enzyme für seine Synthese benötigt, und das Operon muß transkribiert werden. In Ab-
wesenheit von Tryptophan bindet der Repressor also nicht an den Operator. Auf der anderen Seite müssen die Gene ausgeschaltet werden, wenn Tryptophan vorhanden ist; in diesem Fall bindet der Repressor-Tryptophan-Komplex an den Operator und verhindert
die Transkription. Tryptophan wirkt hier als sogenannter Corepressor. Operons dieses Typs bezeichnet man als reprimierbar, im Gegensatz zum lac-Operon und anderen induzierbaren Operons.

a) Glucose hemmt die cAMP-Synthese

b) CAP-cAMP stimuliert die Transkription

niedriger cAMP-Spiegel,
CAP-Stelle frei

