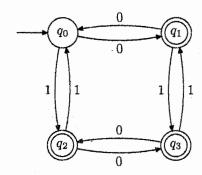
Ubung zur Vorlesung Automatentheorie und Formale Sprachen

Aufgabe 1 (10 Punkte)

Welche der folgenden Sprachen sind regulär? Beweisen Sie jeweils Ihre Behauptung!

- σ (a) die Sprache aller deutschen Wörter, die Sie auf diesem Aufgabenblatt finden
- ∂ (b) $L(a^*(b+c) \overset{*}{*} a^*) \setminus L(a^+(b^++c^+)a^+)$
- \circ (c) $\{a^n \mid n \text{ ist eine Quadratzahl}\}$
- (d) $\{w \in \{a, b\}^* \mid w \text{ enthalt mindestens doppelt so viele } a \text{ wie } b\}$

Aufgabe 2 (10 Punkte)


Erzeugen Sie einen NFA für $a^*(bb+cc)^*a^*$, wandeln Sie ihn in einen DFA um und minimieren sie diesen!

Aufgabe 3 (10 Punkte)

Entwerfen Sie eine Grammatik, die genau die Palindrome über dem Alphabet $\{a, b\}$ erzeugt. Beweisen Sie formal und ausführlich, daß Ihre Grammatik das Gewünschte leistet.

Aufgabe 4 (10 Punkte)

Transformieren Sie den folgenden Automaten durch Zustandselimination in einen regulären Ausdruck:

Aufgabe 5 (10 Punkte)

Gegeben ist folgende Grammatik G

$$S \to AB \mid ASA$$
$$A \to aAB \mid a$$
$$B \to bSa \mid b$$

und die Sprache $L = (aba)^*$.

- a) Enthält L ein Wort aus L(G)?
- b) Geben Sie einen regulären Ausdruck für $pre^*(L) \cap \{a, b\}^*$ an.
- c) Gibt es Satzformen α , β und γ , so daß $\gamma \in L$ und $\alpha aa\beta \stackrel{*}{\Rightarrow} \gamma$?

Lösen sie diese Aufgaben, indem Sie zunächst einen NFA für $pre^*(L)$ aufstellen.

Rückgabe:					
		/		>	